Abstract:
The present disclosure relates to a field of memory technical, and in particular to a magnetoresistive device, a method for changing a resistance state of the magnetoresistive device, and a synapse learning module. The magnetoresistive device includes a top electrode, a ferromagnetic reference layer, a tunneling layer, a ferromagnetic free layer, a spin-orbit coupling layer, and a bottom electrode that are arranged in sequence along a preset direction, where the spin-orbit coupling layer includes a first thickness region and a second thickness region distributed alternately, and a thickness of the first thickness region is different form a thickness of the second thickness region; and the ferromagnetic free layer includes a pinning region, and a position of the pinning region is in one-to-one correspondence with a position of the first thickness region.
Abstract:
The present disclosure provides a method for manufacturing ordered nanowires array of NiO doped with Pt in situ, comprising: growing a Ni layer on a high-temperature resistant and insulated substrate; applying a photoresist on the Ni layer, pattering a pattern region of the ordered nanowires array by applying electron beam etching on the photoresist, growing Ni on the pattern region of the ordered nanowires array, peeling off the photoresist by acetone and etching the surface of the Ni layer by ion beam etching so as to etch off the Ni layer grown on the surface of the substrate and to leave the Ni on the pattern region of the ordered nanowires array to form the ordered Ni nanowires array; dipping the ordered Ni nanowires array into a solution of H2PtCl6 so as to displace Pt on the Ni nanowires array by a displacement reaction; and oxidizing the Ni nanowires array attached with Pt in an oxidation oven to obtain the ordered nanowires array of NiO doped with Pt. The present invention is simple and practical and the sensitivity and reliability of the doped sensor on the gas of CO and H2 are greatly improved.