Abstract:
PROBLEM TO BE SOLVED: To provide a system and a method for allowing execution of a system management mode (SMM) code during secure operations in a microprocessor system. SOLUTION: In one embodiment, a system management interruption (SMI) may be first directed to a handler in a secured virtual machine monitor (SVMM). The SMI may then be re-directed to an SMM code located in a virtual machine (VM) that is under the security control of the SVMM. This redirection can be accomplished by allowing reading from and writing to the system management (SM) base register in the processor. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
Delivering a Direct Proof private key to a device installed in a client computer system in the field may be accomplished in a secure manner without requiring significant non-volatile storage in the device. A unique pseudo-random value is generated and stored in the device at manufacturing time. The pseudorandom value is used to generate a symmetric key for encrypting a data structure holding a Direct Proof private key and a private key digest associated with the device. The resulting encrypted data structure is stored on a protected on-liner server accessible by the client computer system. When the device is initialized on the client computer system, the system checks if a localized encrypted data structure is present in the system. If not, the system obtains the associated encrypted data structure from the protected on-line server using a secure protocol. The device decrypts the encrypted data structure using a symmetric key regenerated from its stored pseudo-random value to obtain the Direct Proof private key. If the private key is valid, it may be used for subsequent authentication processing by the device in the client computer system.
Abstract:
Delivering a Direct Proof private key in a signed group of keys to a device installed in a client computer system in the field may be accomplished in a secure manner without requiring significant non-volatile storage in the device. A unique pseudo-random value is generated and stored along with a group number in the device at manufacturing time. The pseudo-random value is used to generate a symmetric key for encrypting a data structure holding a Direct Proof private key and a private key digest associated with the device. The resulting encrypted data structure is stored in a signed group of keys (e.g., a signed group record) on a removable storage medium (such as a CD or DVD), and distributed to the owner of the client computer system. When the device is initialized on the client computer system, the system checks if a localized encrypted data structure is present in the system. If not, the system obtains the associated signed group record of encrypted data structures from the removable storage medium, and verifies the signed group record. The device decrypts the encrypted data structure using a symmetric key regenerated from its stored pseudo-random value to obtain the Direct Proof private key, when the group record is valid. If the private key is valid, it may be used for subsequent authentication processing by the device in the client computer system.
Abstract:
In one embodiment, a method includes transitioning control to a virtual machine (VM) from a virtual machine monitor (VMM), determining that a VMM timer indicator is set to an enabling value, and identifying a VMM timer value configured by the VMM. The method further includes periodically comparing a current value of a timing source with the VMM timer value, generating an internal event if the current value of the timing source has reached the VMM timer value, and transitioning control to the VMM in response to the internal event without incurring an event handling procedure in any one of the VMM and the VM.
Abstract:
Providing trusted time in a computing platform, while still supporting privacy, may be accomplished by having a trusted time device provide the trusted time to an application executing on the computing platform. The trusted time device may be reset by determining if a value in a trusted time random number register has been set, and if not, waiting a period of time, generating a new random number, and storing the new random number in the trusted time random number register. The trusted time random number register is set to zero whenever electrical power is first applied to the trusted time device upon power up of the computing platform, and whenever a battery powering the trusted time device is removed and reconnected. By keeping the size of the trusted time random number register relatively small, and waiting the specified period of time, attacks on the computing platform to determine the trusted time may be minimized, while deterring the computing platform from being uniquely identified.
Abstract:
A method and apparatus for matching parent processor address translations to media processors' address translations and providing concurrent memory access to a plurality of media processors through separate translation table information. In particular, a page directory for a given media application is copied to a media processor's page directory when the media application allocates memory that is to be shared by a media application running on the parent processor and media processors.
Abstract:
Delivering a Direct Proof private key to a device installed in a client computer system in the field may be accomplished in a secure manner without requiring significant non-volatile storage in the device. A unique pseudo-random value is generated and stored in the device at manufacturing time. The pseudorandom value is used to generate a symmetric key for encrypting a data structure holding a Direct Proof private key and a private key digest associated with the device. The resulting encrypted data structure is stored on a removable storage medium (such as a CD), and distributed to the owner of the client computer system. When the device is initialized on the client computer system, the system checks if a localized encrypted data structure is present in the system. If not, the system obtains the associated encrypted data structure from the removable storage medium. The device decrypts the encrypted data structure using a symmetric key regenerated from its stored pseudo-random value to obtain the Direct Proof private key. If the private key is valid, it may be used for subsequent authentication processing by the device in the client computer system.
Abstract:
Delivering a Direct Proof private key to a device installed in a client computer system in the field may be accomplished in a secure manner without requiring significant non-volatile storage in the device. A unique pseudo-random value is generated and stored in the device at manufacturing time. The pseudo-random value is used to generate a symmetric key for encrypting a data structure holding a Direct Proof private key and a private key digest associated with the device. The resulting encrypted data structure is stored on a protected on-line server accessible by the client computer system.
Abstract:
Delivering a Direct Proof private key to a device installed in a client computer system in the field may be accomplished in a secure manner without requiring significant non-volatile storage in the device. A unique pseudo-random value is generated and stored in the device at manufacturing time. The pseudorandom value is used to generate a symmetric key for encrypting a data structure holding a Direct Proof private key and a private key digest associated with the device. The resulting encrypted data structure is stored on a protected on-liner server accessible by the client computer system. When the device is initialized on the client computer system, the system checks if a localized encrypted data structure is present in the system. If not, the system obtains the associated encrypted data structure from the protected on-line server using a secure protocol. The device decrypts the encrypted data structure using a symmetric key regenerated from its stored pseudo-random value to obtain the Direct Proof private key. If the private key is valid, it may be used for subsequent authentication processing by the device in the client computer system.
Abstract:
A storage device is provided to maintain a count of flow control credits to be granted to a device in association with transactions over a channel to be implemented on a data link and control logic is provided to communicate, to the device, an indication of an amount of flow control credits for the device in association with a reset of the data link.