Abstract:
A method of detecting synchronization errors during the transfer of data in which a transmitting agent sends to the receiving agent either: (a) data parity encoded with a data parity function when the transmitting agent encodes data in one or more clock signals, or (b) header parity encoded with a header parity function when the transmitting agent encodes header information in the one or more clock signals. A synchronization error condition is detected when the receiving agent either: (a) is configured to receive the data parity and actually receives the header parity, or (b) is configured to receive the header parity and actually receives the data parity.
Abstract:
Methods and apparatus relating to improving address translation caching and/or input/output (I/O) cache performance in virtualized environments are described. In one embodiment, a hint provided by an endpoint device may be utilized to update information stored in an I/O cache. Such information may be utilized for implementation of a more efficient replacement policy in an embodiment. Other embodiments are also disclosed.
Abstract:
An interface to transfer data between a memory control hub and an input/output control hub of a chipset within a computer system. One embodiment of the interface includes a bi-directional data signal path and a pair of source synchronous strobe signals. The data signal path transmits data in packets via split transactions. In addition, the packets include a request packet and a completion packet, if necessary. Furthermore, in one embodiment, the request packets include a transaction descriptor.
Abstract:
A method and apparatus for regulating the deferral of a transaction issued on a bus by a processor in a computer system is disclosed. A bus transaction recorder coupled to the bus processes encoded signals from the transaction issued on the bus. A line coupled to the bus sends an indication signal when a pending transaction request is issued on the bus. A CPU latency timer times the current transaction on the bus when a new pending transaction is waiting on the bus. The CPU latency timer outputs an expiration signal when the transaction takes more than a predetermined amount of time to complete. A transaction processor unit is coupled to the bus transaction recorder, the line, and the CPU latency timer. The transaction processor unit defers the transactions issued on the bus when the transaction processor receives the indication signal indicating that a pending transaction is waiting to be issued on the bus, when the encoded signals from the transaction issued on the bus indicate that the transaction issued on the bus is a candidate for deferral, and when the CPU latency timer outputs the expiration signal.
Abstract:
One embodiment of an apparatus for communicating transaction types between hubs (130, 160) in a computer system (100) includes a data path input/output unit (135, 165) to output a packet header (500). The packet header includes a request/completion field (31) to indicate whether the packet header (500) is a request packet header or a completion packet header. The packet header (500) also includes a read/write field (30) to indicate whether the packet header (500) is for a read packet or for a write packet. The read/write field (30) further indicates whether a length of data is to follow the packet header. The packet header further includes a data length field (8-13) to indicate the length of data.
Abstract:
In one embodiment, the present invention includes a fabric on a first semiconductor die to communicate with at least one agent on the die according to an on-chip protocol and a packetization layer coupled to the fabric to receive command and data information from the fabric on multiple links and to packetize the information into a packet for transmission from the die to another die via an in-package packetized link. Other embodiments are described and claimed
Abstract:
Methods and apparatus for control of On-Die System Fabric (OSF) blocks are described. In one embodiment, a shadow address corresponding to a physical address may be stored in response to a user-level request and a logic circuitry (e.g., present in an OSF) may determine the physical address from the shadow address. Other embodiments are also disclosed.
Abstract:
If a switching or bridging equipment in a point-to-point architecture receives a datagram which is deemed to be definitive, it modifies the packet to indicate that an error exists, before forwarding it to its destination. The header and payload of the datagram are handled differently, and the datagram may not be modified if error is detected in the header only. If the receiver detects a tailer in a datagram, it treats it as containing corrupt content.
Abstract:
A method and apparatus for regulating the deferral of a transaction issued on a bus by a processor in a computer system is disclosed. A bus transaction recorder coupled to the bus processes encoded signals from the transaction issued on the bus. A line coupled to the bus sends an indication signal when a pending transaction request is issued on the bus. A CPU latency timer times the current transaction on the bus when a new pending transaction is waiting on the bus. The CPU latency timer outputs an expiration signal when the transaction takes more than a predetermined amount of time to complete. A transaction processor unit is coupled to the bus transaction recorder, the line, and the CPU latency timer. The transaction processor unit defers the transactions issued on the bus when the transaction processor receives the indication signal indicating that a pending transaction is waiting to be issued on the bus, when the encoded signals from the transaction issued on the bus indicate that the transaction issued on the bus is a candidate for deferral, and when the CPU latency timer outputs the expiration signal.