Abstract:
An optical modulator that modulates light through the semiconductor substrate through the back side of an integrated circuit die. In one embodiment, an optical modulator is disposed within a flip chip packaged integrated circuit die. The optical modulator includes a modulation region through which an optical beam is passed a plurality of times. In one embodiment, the optical beam enters through the back side of the semiconductor substrate at a first location and the modulated optical beam is deflected out through a second location on the back side of the semiconductor substrate. The interaction length of the optical modulator is increased by internally deflecting and passing the optical beam through the modulation region a plurality of times. In one embodiment, total internal reflection is used to deflect the optical beam. In another embodiment, reflective materials are used to internally deflect the optical beam. In one embodiment, the modulation region is provided with a charged region formed with a p-n junction. In another embodiment, the charged region is provided using metal-oxide-semiconductor type structures.
Abstract:
Interface loss, diffraction loss, and physical sizes of arrayed-waveguide AWG devices 10, such as AWG routers, are reduced via use of an array 12 of asymmetric waveguide couplers 20 that is inserted between arrayed waveguides 13. The asymmetric waveguide couplers 20 operate to couple leaked optical power back to the arrayed waveguides 13. A lenslet matrix may also be used to pre-channel portions of an optical wavefront. The lenslet matrix includes lenslet columns that are aligned with gaps between the arrayed waveguides 13, such that the portions of the optical wavefront are directed towards the arrayed waveguides 13 rather than towards the gaps 14.
Abstract:
An optical modulator (101) that modulates light through the semiconductor substrate (103) through the back side of an integrated circuit die (103). In one embodiment, an optical modulator is disposed within a flip chip packaged integrated circuit die (103). The optical modulator includes a modulation region (115) through which an optical beam is passed a plurality of times. In one embodiment, the optical beam (111) enters through the back side of th e semiconductor substrate at a first location (123) and the modulated optical beam (127) is deflected out through a second location (125) on the back side of the semiconductor substrate (103). The interaction length of the optical modulator is increased by internally deflecting and passing the optical beam through the modulation region a plurality of times. In one embodiment, total internal reflection is used to deflect the optical beam. In another embodiment, reflective materials (233) are used to internally deflect the optical beam. In one embodiment, the modulation region is provided with a charged region formed with a p-n junction (115, 215). In another embodiment, the charged region is provided using metal-oxide-semiconductor type structures (315, 415).
Abstract:
An optical modulator (101) that modulates light through the semiconductor substrate (103) through the back side of an integrated circuit die (103). In one embodiment, an optical modulator is disposed within a flip chip packaged integrated circuit die (103). The optical modulator includes a modulation region (115) through which an optical beam is passed a plurality of times. I n one embodiment, the optical beam (111) enters through the back side of the semiconductor substrate at a first location (123) and the modulated optical beam (127) is deflected out through a second location (125) on the back side of the semiconductor substrate (103). The interaction length of the optical modulator is increased by internally deflecting and passing the optical beam through the modulation region a plurality of times. In one embodiment, total internal reflection is used to deflect the optical beam. In another embodiment, reflective materials (233) are used to internally deflect the optical beam. In one embodiment, the modulation region is provided with a charged region formed with a p-n junction (115, 215). In another embodiment, the charged region is provided using metal-oxide-semiconductor type structur es (315, 415).
Abstract:
The present disclosure relates to the fabrication of spin transfer torque memory devices and spin logic devices, wherein a strain engineered interface is formed within at least one magnet within these devices. In one embodiment, the spin transfer torque memory devices may include a free magnetic layer stack comprising a crystalline magnetic layer abutting a crystalline stressor layer. In another embodiment, the spin logic devices may include an input magnet, an output magnet; wherein at least one of the input magnet and the output magnet comprises a crystalline magnetic layer abutting crystalline stressor layer and/or the crystalline magnetic layer abutting a crystalline spin-coherent channel extending between the input magnet and the output magnet.
Abstract:
Es werden Techniken zur Implementierung einer Hybrid-Verarbeitungsarchitektur bereitgestellt, umfassend einen Allzweck-Prozessor (CPU) und eine neuronale Verarbeitungseinheit (NPU), gekoppelt mit einem analogen speicherinternen Künstliche-Intelligenz- (KI-) Prozessor. Gemäß einem Ausführungsbeispiel implementiert der hybride Prozessor einen KI-Anweisungssatz, umfassend Anweisungen zum Durchführen von analogen speicherinternen Berechnungen. Der KI-Prozessor umfasst eine oder mehrere Schichten, die NN-Schichten umfassend eine Speicherschaltungsanordnung und eine analoge Verarbeitungsschaltungsanordnung. Die Speicherschaltungsanordnung ist ausgebildet, um die Gewichtungsfaktoren und die Eingangsdaten zu speichern. Die analoge Verarbeitungsschaltungsanordnung ist ausgebildet, um analoge Berechnungen an den gespeicherten Gewichtungsfaktoren und den gespeicherten Eingangsdaten gemäß der Ausführung, durch die NPU, einer Anweisung von dem KI-Anweisungssatz durchzuführen. Der KI-Anweisungssatz umfasst Anweisungen zum Durchführen von Punktprodukten, Multiplikation, Differenzierung, Normierung, Pooling, Schwellenwertverfahren, Transponierung (transposition) und Rückwärtspropagierungstraining. Die NN-Schichten sind als Konvolutions-NN-Schichten und/oder vollständig verbunden NN-Schichten ausgebildet.
Abstract:
An optical amplifier comprises a substrate, an optical multiplexer embedded in the substrate, pump light sources with multiple wavelengths coupled to the optical multiplexer, and an amplification waveguide coupled to the multiplexer. In one embodiment an optical signal is directed to another waveguide in the substrate. In another embodiment, the amplification waveguide is doped with a rare earth element.