Abstract:
An apparatus and method electrically pumping a hybrid evanescent laser. For one example, an apparatus includes an optical waveguide disposed in silicon. An active semiconductor material is disposed over the optical waveguide defining an evanescent coupling interface between the optical waveguide and the active semiconductor material such that an optical mode to be guided by the optical waveguide overlaps both the optical waveguide and the active semiconductor material. A current injection path is defined through the active semiconductor material and at least partially overlapping the optical mode such that light is generated in response to electrical pumping of the active semiconductor material in response to current injection along the current injection path at least partially overlapping the optical mode.
Abstract:
Techniques and architectures for providing a reflective target area of an integrated circuit die assembly. In an embodiment, a reflective bevel surface of a die allows an optical signal to be received from the direction of a side surface of a die assembly for reflection into a photodetector. In another embodiment, one or more grooves in a coupling surface of the die provide respective leverage points for aligning a target area of the bevel surface with a detecting surface of the photodetector.
Abstract:
A method and an apparatus providing optical input/output in an integrated circuit. In one embodiment, optical modulators and demodulators, which are coupled to integrated circuit input/output nodes, are disposed on or within the back side semiconductor substrate of a flip chip packaged integrated circuit. Since a flip chip packaged integrated circuit die is utilized, full access to the optical modulators and demodulators is provided from the back side of the integrated circuit die for optical input/output. In one embodiment, a heat sink including a light source and an optical assembly is thermally and optically coupled to the back side of the integrated circuit die. A light beam is directed to the optical modulators and the deflected modulated light beam is routed and directed to the optical demodulators to realize optical input/output. In one embodiment, infrared light may be utilized such that the optical modulators and demodulators are disposed within a silicon semiconductor substrate. Since silicon is partially transparent to infrared light, optical input/output is realized through the back side and through the semiconductor substrate of the flip chip packaged integrated circuit die.
Abstract:
A method and an apparatus for cooling a semiconductor die. In one embodiment, a C4 packaged semiconductor die is thermally coupled to a cooling plate having an opening. The opening of the cooling plate is disposed over a back side surface of the semiconductor die such that direct unobstructed access to the exposed back side surface of the semiconductor die is provided. A conformable thermal conductor, such as indium, is disposed between the semiconductor die and the cooling plate to improve the thermal coupling between the semiconductor and cooling plate. In one embodiment, the semiconductor die is mounted on a circuit board and a cooling block is disposed on the opposite side of the circuit board. The cooling plate is thermally coupled to the cooling block with heat transfer conduits, such as thermal screws, that extend through the circuit board to transfer the heat from the semiconductor die through the cooling plate through the heat transfer conduits to the cooling block located on the opposite side of the circuit board. In one embodiment, coolant is circulated through the cooling block to remove heat from the cooling block.
Abstract:
Instead of monitoring the optical power coming out of a waveguide, a direct method of monitoring the optical power inside the waveguide without affecting device or system performance is provided. A waveguide comprises a p-i-n structure which induces a TPA-generated current and may be enhanced with reverse biasing the diode. The TPA current may be measured directly by probing metal contacts provided on the top surface of the waveguide, and may enable wafer-level testing. The p-i-n structures may be implemented at desired points throughout an integrated network, and thus allows probing of different devices for in-situ power monitor and failure analysis.
Abstract:
An apparatus and method providing a plurality of modulated optical beams from a single layer of semiconductor material. For one example, an apparatus includes a plurality of optical waveguides disposed in a single layer of semiconductor material. Each one of the plurality of optical waveguides includes an optical cavity defined along the optical waveguide. A single bar of gain medium material adjoining the single layer of semiconductor material across the plurality of optical waveguides is included. The gain medium-semiconductor material interface is defined along each of the plurality of optical waveguides. A plurality of optical modulators is disposed in the single layer of semiconductor material. Each one of the plurality of optical modulators is optically coupled to a respective one of the plurality of optical waveguides to modulate a respective optical beam directed from the optical cavity.
Abstract:
An optical modulator (101) that modulates light through the semiconductor substrate (103) through the back side of an integrated circuit die (103). In one embodiment, an optical modulator is disposed within a flip chip packaged integrated circuit die (103). The optical modulator includes a modulation region (115) through which an optical beam is passed a plurality of times. In one embodiment, the optical beam (111) enters through the back side of th e semiconductor substrate at a first location (123) and the modulated optical beam (127) is deflected out through a second location (125) on the back side of the semiconductor substrate (103). The interaction length of the optical modulator is increased by internally deflecting and passing the optical beam through the modulation region a plurality of times. In one embodiment, total internal reflection is used to deflect the optical beam. In another embodiment, reflective materials (233) are used to internally deflect the optical beam. In one embodiment, the modulation region is provided with a charged region formed with a p-n junction (115, 215). In another embodiment, the charged region is provided using metal-oxide-semiconductor type structures (315, 415).
Abstract:
An optical modulator (101) that modulates light through the semiconductor substrate (103) through the back side of an integrated circuit die (103). In one embodiment, an optical modulator is disposed within a flip chip packaged integrated circuit die (103). The optical modulator includes a modulation region (115) through which an optical beam is passed a plurality of times. I n one embodiment, the optical beam (111) enters through the back side of the semiconductor substrate at a first location (123) and the modulated optical beam (127) is deflected out through a second location (125) on the back side of the semiconductor substrate (103). The interaction length of the optical modulator is increased by internally deflecting and passing the optical beam through the modulation region a plurality of times. In one embodiment, total internal reflection is used to deflect the optical beam. In another embodiment, reflective materials (233) are used to internally deflect the optical beam. In one embodiment, the modulation region is provided with a charged region formed with a p-n junction (115, 215). In another embodiment, the charged region is provided using metal-oxide-semiconductor type structur es (315, 415).
Abstract:
An apparatus and method providing a plurality of modulated optical beams from a single layer of semiconductor material. For one example, an apparatus includes a plurality of optical waveguides disposed in a single layer of semiconductor material. Each one of the plurality of optical waveguides includes an optical cavity defined along the optical waveguide. A single bar of gain medium material adjoining the single layer of semiconductor material across the plurality of optical waveguides is included. The gain medium-semiconductor material interface is defined along each of the plurality of optical waveguides. A plurality of optical modulators is disposed in the single layer of semiconductor material. Each one of the plurality of optical modulators is optically coupled to a respective one of the plurality of optical waveguides to modulate a respective optical beam directed from the optical cavity.
Abstract:
A broadband receiving apparatus includes an antenna to receive a radio signal having a plurality of modulation frequencies. An amplifier drives a laser source from the broadband radio signal to produce an optical signal having a plurality of spectral components. A diffraction grating transforms the optical signal into its spectral components. An array of photo-detectors converts the spectral components into electronic signals corresponding to the plurality of modulation frequencies. A transmitting apparatus includes an array of coherent laser emitters driven by electronic signals corresponding to a plurality of modulation frequencies to produce optical signals corresponding to a plurality of spectral components. A diffraction grating inverse transforms the spectral components into a composite optical signal. A photo-detector converts the composite optical signal into a composite electronic signal including the plurality of modulation frequencies. An amplifier amplifies the composite electronic signal for transmission as a broadband radio signal.