Abstract:
Exposing internal error correction bits from a memory device for use as metadata bits by an external memory controller. In a first mode the memory device applies internal error correction bits for internal error correction at the memory device. In a second mode the memory device exposes the internal error correction bits to the memory controller to allow the memory controller to use the data.
Abstract:
A memory module has a an array of connections. The array of connections is arranged in rows and columns such that there are first and second outer columns. Connections in the first and second outer columns can be interchanged to optimize double-side module placement on a substrate.
Abstract:
Systems, apparatuses and methods may provide for technology that programs a plurality of seed values into a plurality of linear feedback shift registers (LFSRs), wherein the plurality of LFSRs correspond to a data word (DWORD) and at least two of the plurality of seed values differ from one another. The technology may also train a link coupled to the plurality of LFSRs, wherein the plurality of seed values cause a parity bit associated with the DWORD to toggle while the link is being trained. In one example, the technology also automatically selects the plurality of seed values based on one or more of an expected traffic pattern on the link (e.g., after training) or a deskew constraint associated with the link.
Abstract:
A memory subsystem includes a command address bus capable to be operated at double data rate. A memory circuit includes N command signal lines that operate at a data rate of 2R to receive command information from a memory controller. The memory circuit includes 2N command signal lines that operate at a data rate of R to transfer the commands to one or more memory devices. While ratios of 1:2 are specified, similar techniques can be used to send command signals at higher data rates over fewer signal lines from a host to a logic circuit, which then transfers the command signals at lower data rates over more signal lines.
Abstract:
A memory subsystem includes a multi-device package including multiple memory devices organized as multiple ranks of memory. A control unit for the memory subsystem sends a memory access command concurrently to some or all of the ranks of memory, and triggers some of all of the memory ranks that receive the memory access command to change on-die termination (ODT) settings. One of the ranks is selected to execute the memory access command, and executes the command while all ranks triggered to change the ODT setting have the changed ODT setting.
Abstract:
Apparatus, systems, and methods to broadcast a memory command are described. In one embodiment, a memory controller comprising logic to insert a first predetermined value into an all ranks parameter in a memory command, and transmit the memory command to a memory device. Other embodiments are also disclosed and claimed.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses to save dynamic random access memory (DRAM) self-refresh power. In some embodiments, the refresh frequency of a DRAM is reduced and errors are allowed to occur. In error check mode, the DRAM stores data and corresponding error check bits. The error check bits may be used to scrub the memory and fix the errors.
Abstract:
A memory subsystem includes memory devices with space dynamically allocated for improvement of reliability, availability, and serviceability (RAS) in the system. Error checking and correction (ECC) logic detects an error in all or a portion of a memory device. In response to error detection, the system can dynamically perform one or more of: allocate active memory device space for sparing to spare a failed memory segment; write a poison pattern into a failed cacheline to mark it as failed; perform permanent fault detection (PFD) and adjust application of ECC based on PFD detection; or, spare only a portion of a device and leave another portion active, including adjusting ECC based on the spared portion. The error detection can be based on bits of an ECC device, and error correction based on those bits and additional bits stored on the data devices.
Abstract:
Memory refresh includes timing offsets for different memory devices, to initiate refresh of different memory devices at different times. A memory controller sends a refresh command to cause refresh of multiple memory devices. In response to the refresh command, the multiple memory devices initiate refresh with timing offsets relative to another of the memory devices. The timing offsets reduce the instantaneous power surge associated with all memory devices starting refresh simultaneously.
Abstract:
A memory subsystem includes a data bus to couple a memory controller to one or more memory devices. The memory controller and one or more memory devices transfer data for memory access operations. The data transfer includes the transfer of data bits and associated check bits over a transfer cycle burst. The memory devices include internal error checking and correction (ECC) separate from the system ECC managed by the memory controller. With a 2N transfer cycle for 2^N data bits for a memory device, the memory devices can provide up to 2N memory locations for N+1 internal check bits, which can leave up to (2N minus (N+1)) extra bits to be used by the system for more robust ECC.