Abstract:
An electro-optic semiconductor package and fabrication method provides enhanced performance. An integrated circuit (IC) having one or more IC contact pads is provided, where the IC contact pads are connected to an IC on the IC wafer. An intermediate wafer having one or more intermediate contact pads is provided, where the intermediate contact pads are connected to an electro-optic arrangement on the intermediate wafer. The method further provides for direct copper bonding the IC contact pads to adjacent intermediate contact pads such that an electro-optic semiconductor package results.
Abstract:
A low cost packaging technique for microelectronic circuit chips fixes a die within an opening in a package core. At least one metallic build up layer is then formed on the die/core assembly and a grid array interposer unit is laminated to the build up layer. The grid array interposer unit can then be mounted within an external circuite using any of a plurality of mounting technologies (e.g., ball grid array (BGA), land grid array (LGA), pin grid array (PGA), surface mount technology (SMT), and/or others). In one embodiment, a single build up layer is formed on the die/core cassembly before lamination of the interposer.
Abstract:
A method of fabricating a microelectronic package having a direct contact heat spreader, a package formed according to the method, a die-heat spreader combination formed according to the method, and a system incorporating the package. The method comprises metallizing a backside of a microelectronic die to form a heat spreader body directly contacting and fixed to the backside of the die thus yielding a die-heat spreader combination. The package includes the die-heat spreader combination and a substrate bonded to the die.
Abstract:
An integrated circuit to be cooled may be abutted in face-to-face abutment with a cooling integrated circuit. The cooling integrated circuit may include electroosmotic pumps to pump cooling fluid through the cooling integrated circuits via microchannels to thereby cool the heat generating integrated circuit. The electroosmotic pumps may be fluidically coupled to external radiators which extend upwardly away from a package including the integrated circuits. In particular, the external radiators may be mounted on tubes which extend the radiators away from the package.
Abstract:
The present invention describes a method and apparatus for mounting a microelectronic device parallel to a substrate with an interposer and two heat sinks, one on each side of the substrate.
Abstract:
A low cost packaging technique for microelectronic circuit chips fixes a die within an opening in a package core. At least one metallic build up layer is then formed on the die/core assembly and a grid array interposer unit is laminated to the build up layer. The grid array interposer unit can then be mounted within an external circuite using any of a plurality of mounting technologies (e.g., ball grid array (BGA), land grid array (LGA), pin grid array (PGA), surface mount technology (SMT), and/or others). In one embodiment, a single build up layer is formed on the die/core cassembly before lamination of the interposer.
Abstract:
The present invention describes a method and apparatus for mounting a microelectronic device parallel to a substrate with an interposer and two heat sinks, one on each side of the substrate.
Abstract:
An electro-optic semiconductor package and fabrication method provides enhanced performance. An integrated circuit (IC) having one or more IC contact pads is provided, where the IC contact pads are connected to an IC on the IC wafer. An intermediate wafer having one or more intermediate contact pads is provided, where the intermediate contact pads are connected to an electro-optic arrangement on the intermediate wafer. The method further provides for direct copper bonding the IC contact pads to adjacent intermediate contact pads such that an electro-optic semiconductor package results.
Abstract:
The present invention describes a method and apparatus for mounting a microelectronic device parallel to a substrate with an interposer and two heat sinks, one on each side of the substrate.
Abstract:
An electro-optic semiconductor package and fabrication method provides enhanced performance. An integrated circuit (IC) having one or more IC contact pads is provided, where the IC contact pads are connected to an IC on the IC wafer. An intermediate wafer having one or more intermediate contact pads is provided, where the intermediate contact pads are connected to an electro-optic arrangement on the intermediate wafer. The method further provides for direct copper bonding the IC contact pads to adjacent intermediate contact pads such that an electro-optic semiconductor package results.