Abstract:
A method of optimizing a fast dynamic channel allocation radio resource management algorithm in a wireless communication system includes a pre-code allocation process, a signal-independent code allocation process, and a post-code allocation process. The pre-code allocation process includes receiving and processing an input message and obtaining system measurements and information from a centralized database. The code allocation process begins by checking the availability of a code set in the cell and generating timeslot sequences for the available timeslots. A code set is assigned to the available timeslots in a timeslot sequence, wherein a successful assignment is a solution. The interference signal code power (ISCP) is calculated for each solution and the solution having the lowest weighted ISCP is selected as an optimal solution. The post-code allocation process includes storing allocation information in a centralized database and creating an output message.
Abstract:
A method of optimizing a fast dynamic channel allocation radio resource management algorithm (102) in a wireless communication system (100) includes a pre-code allocation process (104), a signal-independent code allocation process, and a post-code allocation process. The pre-code allocation process includes receiving and processing an input message and obtaining system measurements and information from a centralized database (112). The code allocation process (102) begins by checking the availability of a code set in the cell and generating timeslot sequences for the available timeslots. A code set is assigned to the available timeslots in a timeslot sequence, wherein a successful assignment is a solution. The interference signal code power (ISCP) is calculated for each solution and the solution having the lowest weighted ISCP is selected as an optimal solution. The post-code allocation process (108) includes storing allocation information in a centralized database and creating an output message (118).
Abstract:
A controlling radio network controller (C-RNC) for use in radio resource management (RRM) functions includes a radio resource management function for managing radio resources. The RRM function uses data stored in a common database, including cell data and wireless transmit/receive unit (WTRU) data. The cell data includes resource assignment information for a cell, and the WTRU data includes WTRU capability and WTRU radio link information.