Abstract:
The present invention relates to a method for constructing a perfectly secret key within a group of nodes. In a group of m nodes, pair-wise secret keys are assigned. Based on pair-wise secret keys, these m nodes generate a group- wise perfectly secret key. In a preferred embodiment, each node communicates with every other node through public noiseless broadcasts.
Abstract:
A method for multicasting a packet begins by providing a buffer for each of two user equipments (UEs) in communication with a base station. A determination is made whether there is a previously unsent packet at the base station. A second determination is made whether both UE buffers are non-empty. A non-empty buffer is flushed if there is no previously unsent packet and if one of the buffers is non-empty. A packet is selected to be transmitted if there is a previously unsent packet or if both buffers are non-empty. The buffers are updated based on feedback received from the UEs.
Abstract:
A wireless transmit/receive unit (WTRU) and a Node B, respectively, perform joint randomness not shared by others (JRNSO) measurement to generate JRNSO bits based on a channel estimate between the WTRU and the Node B. The WTRU and the Node B then perform a reconciliation procedure to generate a common JRNSO bits. The Node B sends the common JRNSO bits to a serving network. The WTRU and the SN secure a session key (such as an integrity key, a cipher key and an anonymity key), using the common JRNSO bits. The JRNSO measurements are performed on an on-going basis, and the session key is updated using a new set of common JRNSO bits. The JRNSO bits may be expanded by using a pseudorandom number generator (PNG) or a windowing technique. A handover may be intentionally induced to increase the JRNSO bits generation rate.
Abstract:
A method and apparatus is used for generating a perfectly random secret key between two or more transceivers in a wireless communication network. In a point- to-point system, both transceivers produce an estimate of the channel impulse response (CIR) based on the received radio signal. The CIR estimation is synchronized and may include error correction and detection. A long secret key of bits is generated from a digitized version of the CIR estimate, from which a perfectly secret encryption key is derived by privacy amplification.
Abstract:
A secret stream of bits begins by receiving a public random stream contained in a wireless communication signal at a transmit/receive unit. The public random stream is sampled and specific bits are extracted according to a shared common secret. These extracted bits are used to create a longer secret stream. The shared common secret may be generated using JRNSO techniques, or provided to the transmit/receive units prior to the communication session. Alternatively, one of the transmit/receive unit is assumed to be more powerful than any potential eavesdropper. In this situation, the powerful transmit/receive unit may broadcast and store a public random stream. The weaker transmit/receive unit selects select random bits of the broadcast for creating a key. The weaker transmit/receive unit sends the powerful transmit/receive unit the selected bit numbers, and powerful transmit/receive unit uses the random numbers to produce the key created by the weaker transmit/receive unit.
Abstract:
A method and apparatus for cooperation in wireless communications. Cooperation is considered among a number of network elements, including at least one wireless transmit-receive unit, at least one relay station, and at least one base station.
Abstract:
A method and apparatus for securing location information and access control using the location information are disclosed. A wireless transmit/receive unit (WTRU) includes a location sensing entity and a subscriber identity module (SIM). The location sensing entity generates location information of the WTRU and the location information is embedded in a message in an SIM. A trusted processing module in the WTRU verifies integrity of the location information. The trusted processing module may be on the SIM. The location information may be physical location information or contextual location-related information. The trusted processing module is configured to cryptographically secure and bind the location information to the WTRU, and verify trust metrics of an external entity prior to granting an access to the location information or accepting information from the external entity. The trusted processing module may be a trusted computing group (TCG) trusted platform module (TPM) or mobile trusted module (MTM). The location information may be used for an authentication purpose or access control. The location information may be combined with time information.
Abstract:
A method and system for generating a secret key from joint randomness shared by wireless transmit/receive units (WTKUs) are disclosed. A first WTRU and a second WTRU perform channel estimation to generate a sampled channel impulse response (CIR) on a channel between the first WTRU and the second WTRU. The first WTRU generates a set of bits from the sampled CIR and generates a secret key and a syndrome, (or parity bits), from the set of bits. The first WTRU sends the syndrome, (or parity bits), to the second WTRU. The second WTRU reconstructs the set of bits from the syndrome, (or parity bits), and its own sampled CIR, and generates the secret key from the reconstructed set of bits.
Abstract:
A technique is applied to increase secret bit generation rate for a wireless communication. A wireless transmit/receive unit (WTRU) measures channel impulse responses (CIRs) on downlink and generates secret bits based on the CIRs. Each of the network entities also measures a CIR on uplink between itself and the WTRU. On the network side, the network entities forward the CIRs on uplink to an aggregation controller, which generates secret bits based on the uplink CIRs. Alternatively, in a cooperative network, a cooperating node may measure CIRs on channels with a source node and a destination node and generate secret bits. The cooperating node then sends the secret bits to the destination node so that the secret bits are used for communication between the source and destination nodes. The secret bits are further characterized by a joint randomness not shared with others (JRNSO). The aggregation controller, such as radio network controller (RNC), intentionally induces a hard or soft handover of the WTRU to each of the network entities to increase the JRNSO bit generation rate.