Abstract:
A semiconductor package includes a semiconductor die having a sensor structure disposed at a first side of the semiconductor die, and a first port extending through the semiconductor die from the first side to a second side of the semiconductor die opposite the first side, so as to provide a link to the outside environment. Corresponding methods of manufacture are also provided.
Abstract:
A microelectromechanical systems (MEMS) package assembly and a method of manufacturing the same is provided. The MEMS package assembly includes a substrate, a housing coupled to the substrate to form a cavity, wherein the housing includes a transparent plate disposed above and parallel to the substrate and is configured to permit a transmission of light therethrough, and a MEMS chip disposed within the cavity and including a first main surface proximal to the transparent plate and a second main surface opposite to the first main surface and coupled to the substrate. The MEMS chip is oriented such that the first main surface is tilted at a tilt angle with respect to the transparent plate.
Abstract:
A device includes a first power semiconductor chip with a first contact pad and a second contact pad on a first face and a third contact pad on the second face. The device further includes a second power semiconductor chip with a first contact pad and a second contact pad on a first face and a third contact pad on the second face. The first and second power semiconductor chips are arranged one above another, and the first face of the first power semiconductor chip faces in the direction of the first face of the second power semiconductor chip. In addition, the first power semiconductor chip is located laterally at least partially outside of the outline of the second power semiconductor chip.
Abstract:
A semiconductor device including an Integrated Circuit (IC) package and a plastic waveguide. The IC package includes a semiconductor chip; and an embedded antenna formed within a Redistribution Layer (RDL) coupled to the semiconductor chip, wherein the RDL is configured to transport a Radio Frequency (RF) signal between the semiconductor chip and the embedded antenna. The plastic waveguide is attached to the IC package and configured to transport the RF signal between the embedded antenna and outside of the IC package.
Abstract:
A metallic interconnection and a semiconductor arrangement including the same are described, wherein a method of manufacturing the same may include: providing a first structure including a first metallic layer having protruding first microstructures; providing a second structure including a second metallic layer having protruding second microstructures; contacting the first and second microstructures to form a mechanical connection between the structures, the mechanical connection being configured to allow fluid penetration; removing one or more non-metallic compounds on the first metallic layer and the second metallic layer with a reducing agent that penetrates the mechanical connection and reacts with the one or more non-metallic compounds; and heating the first metallic layer and the second metallic layer at a temperature causing interdiffusion of the first metallic layer and the second metallic layer to form the metallic interconnection between the structures.
Abstract:
A microelectromechanical systems (MEMS) package assembly and a method of manufacturing the same is provided. The MEMS package assembly includes a substrate, a housing coupled to the substrate to form a cavity, wherein the housing includes a transparent plate disposed above and parallel to the substrate and is configured to permit a transmission of light therethrough, and a MEMS chip disposed within the cavity and including a first main surface proximal to the transparent plate and a second main surface opposite to the first main surface and coupled to the substrate. The MEMS chip is oriented such that the first main surface is tilted at a tilt angle with respect to the transparent plate.
Abstract:
A semiconductor package includes a semiconductor die having a sensor structure disposed at a first side of the semiconductor die, and a first port extending through the semiconductor die from the first side to a second side of the semiconductor die opposite the first side, so as to provide a link to the outside environment. Corresponding methods of manufacture are also provided.
Abstract:
A semiconductor device includes a microelectromechanical system (MEMS) die, a lid, and an integrated circuit die. The lid is over the MEMS die and defines a cavity between the lid and the MEMS die. The integrated circuit die is attached to an inner side of the lid. The integrated circuit die is electrically coupled to the MEMS die.
Abstract:
A method comprises: arranging a plurality of semiconductor chips above a carrier, wherein active main surfaces of the semiconductor chips face the carrier; filling a cavity with a molding material; pressing the semiconductor chips arranged on the carrier into the molding material; and separating the molding material with the semiconductor chips embedded therein from the carrier, wherein main surfaces of the semiconductor chips that are situated opposite the active main surfaces are covered by the molding material.
Abstract:
A metallic interconnection and a semiconductor arrangement including the same are described, wherein a method of manufacturing the same may include: providing a first structure including a first metallic layer having protruding first microstructures; providing a second structure including a second metallic layer having protruding second microstructures; contacting the first and second microstructures to form a mechanical connection between the structures, the mechanical connection being configured to allow fluid penetration; removing one or more non-metallic compounds on the first metallic layer and the second metallic layer with a reducing agent that penetrates the mechanical connection and reacts with the one or more non-metallic compounds; and heating the first metallic layer and the second metallic layer at a temperature causing interdiffusion of the first metallic layer and the second metallic layer to form the metallic interconnection between the structures.