Abstract:
Technologies for identifying a cache line of a network packet for eviction from an on-processor cache of a network device communicatively coupled to a network controller. The network device is configured to determine whether a cache line of the cache corresponding to the network packet is to be evicted from the cache based on a determination that the network packet is not needed subsequent to processing the network packet, and provide an indication that the cache line is to be evicted from the cache based on an eviction policy received from the network controller.
Abstract:
Hardware processors and methods to perform self-monitoring diagnostics to predict and detect failure are described. In one embodiment, a hardware processor includes a plurality of cores, and a diagnostic hardware unit to isolate a core of the plurality of cores at run-time, perform a stress test on an isolated core, determine a stress factor from a result of the stress test, and store the stress factor in a data storage device.
Abstract:
Discussed herein are component redundancy systems, devices, and methods. A method to transfer a workload from a first component to a second component of a same device may include monitoring a wear indicator associated with the first component, and in response to an indication that the first component is stressed based on the wear indicator, transferring a workload of the first component to the second component.
Abstract:
In one embodiment, the present invention includes a processor having a plurality of cores and a control logic to control provision of a voltage/frequency to a first core of the plurality of cores independently of provision of a voltage/frequency to at least a second core of the plurality of cores. In some embodiments, the voltages may be provided from one or more internal voltage regulators of the processor. Other embodiments are described and claimed.
Abstract:
In one embodiment, a method comprises determining, at a plurality of instances in time, a value of at least one stress characteristic of a hardware resource; determining an accumulated stress value of the hardware resource, the accumulated stress value comprising the sum of a plurality of incremental stress values, an incremental stress value determined based on the value of the at least one stress characteristic at a particular instance in time; and generating a first stress indicator in response to a determination that the accumulated stress value of the hardware resource is greater than a first threshold stress value associated with the hardware resource.
Abstract:
One embodiment of an apparatus includes a semiconductor chip having a processor and an on-die non-volatile storage resource. The on-die non-volatile storage may store different, appropriate performance related information for different configurations and usage cases of the processor for a same performance state of the processor.
Abstract:
In one embodiment, the present invention includes a processor having a plurality of cores and a control logic to control provision of a voltage/frequency to a first core of the plurality of cores independently of provision of a voltage/frequency to at least a second core of the plurality of cores. In some embodiments, the voltages may be provided from one or more internal voltage regulators of the processor. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor having a plurality of cores and a control logic to control provision of a voltage/frequency to a first core of the plurality of cores independently of provision of a voltage/frequency to at least a second core of the plurality of cores. In some embodiments, the voltages may be provided from one or more internal voltage regulators of the processor. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor having a plurality of cores and a control logic to control provision of a voltage/frequency to a first core of the plurality of cores independently of provision of a voltage/frequency to at least a second core of the plurality of cores. In some embodiments, the voltages may be provided from one or more internal voltage regulators of the processor. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor having a plurality of cores and a control logic to control provision of a voltage/frequency to a first core of the plurality of cores independently of provision of a voltage/frequency to at least a second core of the plurality of cores. In some embodiments, the voltages may be provided from one or more internal voltage regulators of the processor. Other embodiments are described and claimed.