Abstract:
A robotic vehicle (10,100,150A,150B150C,160,1000,1000A,1000B,1000C) includes a chassis (20,106,152,162) having front and rear ends (20A,152A,20B,152B) and supported on right and left driven tracks (34,44,108,165). Right and left elongated flippers (50,60,102,154,164) are disposed on corresponding sides of the chassis and operable to pivot. A linkage (70,156,166) connects a payload deck assembly (D1,D2,D3,80,158,168,806), configured to support a removable functional payload, to the chassis. The linkage has a first end (70A) rotatably connected to the chassis at a first pivot (71), and a second end (70B) rotatably connected to the deck at a second pivot (73). Both of the first and second pivots include independently controllable pivot drivers (72,74) operable to rotatably position their corresponding pivots (71,73) to control both fore-aft position and pitch orientation of the payload deck (D1,D2,D3,80,158,168,806) with respect to the chassis (20,106,152,162).
Abstract:
Systems and methods for autonomous control of a vehicle include interruptible, behavior-based, and selective control. Autonomous control is achieved by using actuators that interact with input devices in the vehicle. The actuators (e.g., linkages) manipulate the input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, or accelerator) to direct the operation of the vehicle. Although operating autonomously, manual operation of the vehicle is possible following the detection of events that suggest manual control is desired. Subsequent autonomous control may be permitted, permitted after a prescribed delay, or prevented. Systems and methods for processing safety signals and/or tracking terrain features are also utilized by an autonomous vehicle.
Abstract:
A robotic vehicle (10,100,150A,150B150C,160,1000,1000A, includes a chassis (20,106,152,162) having front and rear ends (20A,152A,20B,152B) and supported on right and left driven tracks (34,44,108,165). Right and left elongated flippers (50,60,102,154,164) are disposed on corresponding sides of the chassis and operable to pivot. A linkage (70,156,166) connects a payload deck assembly (D1,D2,D3,80,158,168,806), configured to support a removable functional payload, to the chassis. The linkage has a first end (70A) rotatably connected to the chassis at a first pivot (71), and a second end (70B) rotatably connected to the deck at a second pivot (73). Both of the first and second pivots include independently controllable pivot drivers (72,74) operable to rotatably position their corresponding pivots (71,73) to control both fore-aft position and pitch orientation of the payload deck (D1,D2,D3,80,158,168,806) with respect to the chassis (20,106,152,162).
Abstract:
Systems and methods for autonomous control of a vehicle include interruptible, behavior-based, and selective control. Autonomous control is achieved by using actuators that interact with input devices in the vehicle. The actuators (e.g., linkages) manipulate the input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, or accelerator) to direct the operation of the vehicle. Although operating autonomously, manual operation of the vehicle is possible following the detection of events that suggest manual control is desired. Subsequent autonomous control may be permitted, permitted after a prescribed delay, or prevented. Systems and methods for processing safety signals and/or tracking terrain features are also utilized by an autonomous vehicle.