Abstract:
A method of catalytic reaction uses a micro-reactor (1) with a metal catalyst (5) or a metal complex catalyst (5) as a solid phase supported on the inner wall (4c) of a channel (4), a solution (7) dissolving a reactant as a liquid phase and hydrogen (9) as a gas phase are flown through the channel (4) in pipe flow state, and the reaction of the solution (7) and the gas (9) accelerated by the metal catalyst (5) or the metal complex catalyst (5) is conducted by three phase catalytic reaction of solid - liquid - gas phases. The metal catalyst (5) or the metal complex catalyst (5) is incorporated in a polymer, and hydrogenation reaction by three phase catalytic reductive reaction of a substance to be reduced can be conducted in short time at good yield. For hydrogenation reaction of unsaturated organics, the rate of reaction and yield are high when palladium catalyst is used, and carbonylation reaction can be conducted if carbon monoxide is used instead of hydrogen.
Abstract:
The invention provides a novel immobilized Lewis acid catalyst which exhibits high catalytic activity in an aqueous solution and which permits recovery and reuse or long-term continuous use. The invention relates to an immobilized Lewis acid catalyst comprising a solid substance and a Lewis acid supported on the surface of the solid substance by chemical bonding, wherein the surface of the solid substance and the peripheries of the Lewis acid are coated with an ionic liquid, more specifically, an immobilized Lewis acid catalyst comprising a solid substance such as silica gel or an organic polymer and a Lewis acid stable even in water which is supported on the surface of the solid substance by chemical bonding, wherein the surface of the solid substance and the peripheries of the Lewis acid are completely or partially coated with a hydrophobic ionic liquid; a process for the production of the catalyst; use thereof; and a process for the preparation of compounds with the catalyst.