Abstract:
A plurality of elements can be analyzed simultaneously with high sensitivity using a microchip. The microchip (1) comprises a substrate (30), a channel (23) formed in the substrate (30), and an analyzing part (10) consisting of a part of flat surface of the substrate (30), where the outlet of the channel (23) is formed as an opening (9c) and measurement object liquid overflowed from the opening (9c) stays on the flat surface of the substrate (30) to become a sample of analysis. The measurement object liquid is made to overflow as a sample of analysis to the analyzing part (10) using the microchip (1) and then the sample of analysis is preferably dried before a primary X-ray is made to enter under conditions of total reflection and fluorescent X-rays are detected.
Abstract:
A method of catalytic reaction uses a micro-reactor (1) with a metal catalyst (5) or a metal complex catalyst (5) as a solid phase supported on the inner wall (4c) of a channel (4), a solution (7) dissolving a reactant as a liquid phase and hydrogen (9) as a gas phase are flown through the channel (4) in pipe flow state, and the reaction of the solution (7) and the gas (9) accelerated by the metal catalyst (5) or the metal complex catalyst (5) is conducted by three phase catalytic reaction of solid - liquid - gas phases. The metal catalyst (5) or the metal complex catalyst (5) is incorporated in a polymer, and hydrogenation reaction by three phase catalytic reductive reaction of a substance to be reduced can be conducted in short time at good yield. For hydrogenation reaction of unsaturated organics, the rate of reaction and yield are high when palladium catalyst is used, and carbonylation reaction can be conducted if carbon monoxide is used instead of hydrogen.
Abstract:
A functional device (and a functional device manufacturing method) includes a first substrate in which a groove is formed in one surface, a second substrate which is integrally disposed by bonding one surface of the second substrate to the one surface of the first substrate, and forms a flow path together with the groove of the first substrate, at least one modification object of a capture body which captures a target substance supplied into the flow path, an electrode which imparts an electrical or a chemical action to the target substance, and a catalyst, in which the modification object is disposed by being modified on a part of an inner surface of the flow path, a bonding portion between the one surface of the first substrate and the one surface of the second substrate is formed by bonding fluorine to silica.