Abstract:
A locomotive control system and method of use operable to provide operational control of a locomotive ensuing the detection that the locomotive will enter a railroad switch having the point blades incorrectly positioned. The locomotive control system further includes a point alignment detection sensor being operably coupled to a railroad switch and the point blades thereof. A plurality of track transceivers are mounted adjacent to the railroad switch and extend outward from the railroad switch along the railroad track. At least one engine transceiver is provided and is operably coupled to a locomotive. A controller is included and functions to provide logic and control of the locomotive control system. The method provides monitoring of the point blades of a railroad switch and detection of the movement of an approaching locomotive having entered the detection zone and is operable to prevent movement through the railroad switch if damage will occur thereto.
Abstract:
A locomotive control system and method of use operable to provide operational control of a locomotive ensuing the detection that the locomotive will enter a railroad switch having the point blades incorrectly positioned. The locomotive control system further includes a point alignment detection sensor being operably coupled to a railroad switch and the point blades thereof. A plurality of track transceivers are mounted adjacent to the railroad switch and extend outward from the railroad switch along the railroad track. At least one engine transceiver is provided and is operably coupled to a locomotive. A controller is included and functions to provide logic and control of the locomotive control system. The method provides monitoring of the point blades of a railroad switch and detection of the movement of an approaching locomotive having entered the detection zone and is operable to prevent movement through the railroad switch if damage will occur thereto.
Abstract:
A drilling system performs underground boring using a drill rig and a boring tool which is configured for moving through the ground under control of the drill rig to form an underground bore. A monitoring arrangement, forming part of the system, includes a detection arrangement at the drill rig for monitoring at least one operational parameter to produce a data signal relating to at least one of a utility to be installed in the underground bore, the drill rig and the boring tool. A portable device forms another part of the system for receiving the data signal relating to the operational parameter for use by the portable device. A communication arrangement, for example using telemetry, transfers the data signal from the drill rig to the portable device. The operational parameter may be monitored for the purpose of preventing equipment failure.
Abstract:
A boring tool moves having a pitch orientation, a yaw orientation and a roll orientation and is steerable underground using the roll orientation. A maximum drill string curvature is established for steering. The boring tool is advanced over a path segment. An averaged roll characteristic is determined for movement of the boring tool along the path segment. A path segment pitch orientation is established based on at least one measured pitch orientation along the path segment. Using the maximum drill string curvature in combination with the averaged roll characteristic and the path segment pitch orientation, the yaw orientation is determined. The averaged roll characteristic is determined based on a series of incremental roll measurements that are spaced across the path segment. A set of coupled ordinary differential equations is used to characterize movement of the boring tool.
Abstract:
Specific apparatus and associated methods are described for use in establishing the positions of locating field detectors and for path mapping within a region for the purpose of tracking and/or guiding the movement of an underground boring tool. In one aspect, an improvement is provided forming part of an arrangement for tracking the position and/or guiding the boring tool using an electromagnetic locating signal which is transmitted from the boring tool as the boring tool moves through the ground. At least two detectors are located at fixed positions within the region, each being operable in a transmit mode and in a receive mode such that each one of the detectors in the transmit mode is able to transmit a relative locating signal to the other detector for use in determining the relative position of one detector in relation to the other and such that both detectors receive the electromagnetic locating signal in the receive mode for use in determining the position of the boring tool within the region. Provisions are also described for extending drilling range by using additional detectors by moving a limited number of detectors. In another aspect, a system is provided including at least two above ground detectors for sensing the locating signal. The detectors are located at initial positions in the region. Electromagnetic data is generated by the detectors with the boring tool- at multiple positions to generate electromagnetic data which is used to identify the positions of the detectors. A selected flux pathline steering technique is introduced.
Abstract:
Tracking a boring tool is performed within an underground region using a locating signal. The boring tool is moved through the ground during a series of distance movements such that potential movement of the boring tool during any one of the distance movements is less than a maximum movement value. A current positional relationship is determined for a current one of the distance movements based on: a last-determined positional relationship established for an immediately preceding one of the distance movements, certain orientation parameters, the maximum movement value and the determined signal strength of the locating signal in the current positional relationship. Target coordinates are accepted and a target position, based on the target coordinates, is included as part of the current positional relationship. The position of the target is unconstrained with respect to system geometry. Steering command features are provided along with steering warnings.
Abstract:
A radiotelephone is provided which comprises a housing 1 having an earpiece port 4, a loudspeaker 6 and a resonator. The resonator comprises and earpiece path form the loudspeaker to the earpiece port4. Further, the resonator also comprises an internal cavity 7, which may be ring, and a path 8 from the loudspeaker 6 to the internal cavity 7, to provide a specified resonance performance.
Abstract:
A support leg for a dowel sleeve, the dowel sleeve having a hollow open body at a second end spaced from one end of the body connectable to a construction plate. The support leg has a spigot engagable in the body, the exterior of which is engaged by an abutment face. The effective length of the support leg is adjustable by selectively detaching one or more leg member segments, each provided with a disc-like base member.
Abstract:
A dowel sleeve has a tubular body with a mounting assembly at one end for releasable connection to a construction plate, and a leg support engagable at the other end for adjustable support. The construction plate has spaced non-circular holes. A first flange of the mounting assembly has a complementary profile, of smaller dimensions, to the non-circular holes, while a second flange has a similar profile, of larger dimensions, with its major-axis non-aligned with the major-axis of the first flange. The first flange is inserted through one of the non-circular holes, and the tubular body is rotated so the first and second flanges engage opposed faces of the construction plate.The leg support has a spigot engagable in the tubular body, the exterior of which is engaged by an abutment face. The effective length of the support leg is adjustable by selectively detaching one or more leg member segments, each provided with a disc-like base member.
Abstract:
An above ground locator includes an apparatus for determining the strength of the locating signal at a selected point relative to the boring tool. The apparatus includes an antenna arrangement configured for measuring the strength of the locating signal at the selected point along first and second orthogonally opposed receiving axes to produce first and second received signals. A phase shifting arrangement phase shifts the first and second received signals in a predetermined way to generate first and second phase shifted signals, respectively. Thereafter, a summing arrangement adds the first and second phase shifted received signals to generate an output signal which is a vector sum of the first and second received signals. In one feature, third and fourth signals derived from the first and second signals are used to eliminate balance point ambiguity which is present using the first and second signals alone. In another feature, signals corresponding to first, second, third and fourth axes are compared in a way which confines the possible locations of an above ground point to one particular type of region out of a plurality of different types of regions. Tracking of the boring tool may be accomplished in a number of described ways since the regions occur in a specific sequence along the intended path with respect to the location of the boring tool.