Abstract:
Systems and methods for controlling multiple storage devices are provided. A system may include a first storage device and a second storage device, each adapted to store and release electrical energy. The system may also include a controller coupled to the first storage device, the second storage device, and a load. The controller is adapted to optimize operation of the system relative to a first system parameter by controlling the channeling of electric charge in a variable manner between the first storage device, the second storage device, and the load.
Abstract:
A 12 volt automotive battery system includes a first battery coupled to an electrical system, in which the first battery includes a first battery chemistry. The first battery is charged with a relatively constant first voltage, in which an alternator outputs the relatively constant first voltage. The 12 volt automotive battery system further includes a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a DC/DC converter, in which the second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The DC/DC converter boosts the first voltage to a second voltage to charge the second battery during regenerative braking, in which the second voltage is higher than a maximum charging voltage of the first battery.
Abstract translation:12伏特汽车电池系统包括耦合到电气系统的第一电池,其中第一电池包括第一电池化学品。 第一电池以相对恒定的第一电压充电,其中交流发电机输出相对恒定的第一电压。 12伏特汽车电池系统还包括与第一电池并联耦合的第二电池,并且经由DC / DC转换器选择性地耦合到电气系统,其中第二电池包括第二电池化学物质,其具有比 第一次电池化学。 DC / DC转换器将第一电压升压到第二电压,以在再生制动期间对第二电池充电,其中第二电压高于第一电池的最大充电电压。
Abstract:
A 12 volt automotive battery system 12 includes a first battery 30 coupled to an electrical system 66, in which the first battery 30 include a first battery chemistry, and a second battery 32 coupled in parallel with the first battery 30 and selectively coupled to the electrical system 66 via a first switch 288, in which the second battery 32 includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The first switch 288 couples the second battery 32 to the electrical system 66 during regenerative braking to enable the second battery 32 to capture a majority of the power generated during regenerative braking. The 12 volt automotive battery system 12 further includes a variable voltage alternator 64 that outputs a first voltage during regenerative braking to charge the second battery 32 and a second voltage otherwise, in which the first voltage is higher than the second voltage.
Abstract:
A 12 volt automotive battery system 12 includes a first battery 30 coupled to an electrical system 66, in which the first battery 30 include a first battery chemistry, and a second battery 32 coupled in parallel with the first battery 30 and selectively coupled to the electrical system 66 via a first switch 288, in which the second battery 32 includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The first switch 288 couples the second battery 32 to the electrical system 66 during regenerative braking to enable the second battery 32 to capture a majority of the power generated during regenerative braking. The 12 volt automotive battery system 12 further includes a variable voltage alternator 64 that outputs a first voltage during regenerative braking to charge the second battery 32 and a second voltage otherwise, in which the first voltage is higher than the second voltage.
Abstract:
A 12 volt automotive battery system includes a first battery coupled to an electrical system, in which the first battery includes a first battery chemistry. The first battery is charged with a relatively constant first voltage, in which an alternator outputs the relatively constant first voltage. The 12 volt automotive battery system further includes a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a DC/DC converter, in which the second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The DC/DC converter boosts the first voltage to a second voltage to charge the second battery during regenerative braking, in which the second voltage is higher than a maximum charging voltage of the first battery.
Abstract:
A system includes housing having a positive terminal and a negative terminal and one or more energy storage devices disposed therein. One system includes a first energy storage device that operates at a first state of charge level and a second energy storage device that operates at a second state of charge level. The second state of charge level is greater than the first state of charge level.
Abstract:
A 12 volt automotive battery system includes a first battery coupled to an electrical system, in which the first battery includes a first battery chemistry. The first battery is charged with a relatively constant first voltage, in which an alternator outputs the relatively constant first voltage. The 12 volt automotive battery system further includes a second battery coupled in parallel with the first battery and selectively coupled to the electrical system via a DC/DC converter, in which the second battery includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The DC/DC converter boosts the first voltage to a second voltage to charge the second battery during regenerative braking, in which the second voltage is higher than a maximum charging voltage of the first battery.
Abstract translation:12伏汽车电池系统包括耦合到电气系统的第一电池,其中第一电池包括第一电池化学品。 第一电池充有相对恒定的第一电压,其中交流发电机输出相对恒定的第一电压。 12伏汽车电池系统还包括与第一电池并联耦合并且经由DC / DC转换器选择性地耦合到电气系统的第二电池,其中第二电池包括第二电池化学物质,其具有比 第一次电池化学。 DC / DC转换器将第一电压升压到第二电压,以在再生制动期间对第二电池充电,其中第二电压高于第一电池的最大充电电压。
Abstract:
A 12 volt automotive battery system 12 includes a first battery 30 coupled to an electrical system 66, in which the first battery 30 include a first battery chemistry, and a second battery 32 coupled in parallel with the first battery 30 and selectively coupled to the electrical system 66 via a first switch 288, in which the second battery 32 includes a second battery chemistry that has a higher coulombic efficiency than the first battery chemistry. The first switch 288 couples the second battery 32 to the electrical system 66 during regenerative braking to enable the second battery 32 to capture a majority of the power generated during regenerative braking. The 12 volt automotive battery system 12 further includes a variable voltage alternator 64 that outputs a first voltage during regenerative braking to charge the second battery 32 and a second voltage otherwise, in which the first voltage is higher than the second voltage.