Abstract:
There is described an intaglio printing plate coating apparatus (1) comprising a vacuum chamber (3) having an inner space (30) adapted to receive at least one intaglio printing plate (10) to be coated, a vacuum system (4) coupled to the vacuum chamber (3) adapted to create vacuum in the inner space (30) of the vacuum chamber (3), and a physical vapour deposition (PVD) system (5) adapted to perform deposition of wear-resistant coating material under vacuum onto an engraved surface (10a) of the intaglio printing plate (10), which physical vapour deposition system (5) includes at least one coating material target (51, 52) comprising a source of the wear-resistant coating material to be deposited onto the engraved surface (10a) of the intaglio printing plate (10). The vacuum chamber (3) is arranged so that the intaglio printing plate (10) to be coated sits substantially vertically in the inner space (30) of the vacuum chamber (3) with its engraved surface (10a) facing the at least one coating material target (51, 52). The intaglio printing plate coating apparatus (1) further comprises a movable carrier (6) located within the inner space (30) of the vacuum chamber (3) and adapted to support and cyclically move the intaglio printing plate (10) in front of and past the at least one coating material target (51, 52).
Abstract:
There is described an ink wiping system (100) for an intaglio printing press comprising a rotatable wiping roller assembly (102) designed to wipe excess ink from the surface of a rotatable intaglio printing cylinder (80). The rotatable wiping roller assembly (102) comprises a rotatable hollow cylindrical body (110) having an outer surface (110a) positioned to wipe the surface of the printing cylinder (80), and a pressing device (130) disposed inside the cylindrical body (110) and designed to exert pressure on an inner surface (110b) of the cylindrical body (110) and to allow adjustment of a wiping pressure between the cylindrical body and the intaglio printing cylinder (80). The pressing device (130) preferably comprises a plurality of pressing units (132) that are distributed axially along the inside of the hollow cylindrical body (110) to allow adjustment of the wiping pressure between the cylindrical body (110) and the intaglio printing cylinder at a plurality of axial positions along the length of the hollow cylindrical body (110).
Abstract:
There is described an ink wiping system (100; 100'; 100") of an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102; 102*) supported on and partly located in the wiping tank (101 ) for wiping excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100; 100'; 100") comprises a wiping roller retracting device (150) which forms an integral part of the ink wiping system (100; 100'; 100") and is adapted to be coupled to the wiping roller assembly (102; 102*) to move the wiping roller assembly (102; 102*) between a working position (W) where the wiping roller assembly (102; 102*) is supported on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a parking position (P) where the wiping roller assembly (102; 102*) is retracted out of the wiping tank (101) and away from the intaglio printing cylinder (80). In the working position (W) of the wiping roller assembly (102; 102*), the wiping roller retracting device (150) is coupled to the wiping roller assembly (102; 102*). The ink wiping system (100; 100'; 100") further includes, at the parking position (P), a storage section (110) adapted to receive the wiping roller assembly (102; 102*) which is retracted by the wiping roller retracting device (150).
Abstract:
There is described an ink wiping system (100) for an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102) positioned on and partly located in the wiping tank (101) to wipe excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100) comprises a supporting mechanism (200) coupled to the wiping roller assembly (102) and designed to move the wiping roller assembly (102) between a working position where the wiping roller assembly (102) is positioned on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a maintenance position where the wiping roller assembly (102) is moved out of the wiping tank (101) and away from the intaglio printing cylinder (80). Preferably, the wiping roller assembly (102) comprises a rotatable hollow cylindrical body (110) having an outer surface (110a) positioned to wipe the surface of the intaglio printing cylinder (80).
Abstract:
There is described an ink wiping system (100) for an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102) positioned on and partly located in the wiping tank (101) to wipe excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100) comprises a supporting mechanism (200) coupled to the wiping roller assembly (102) and designed to move the wiping roller assembly (102) between a working position where the wiping roller assembly (102) is positioned on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a maintenance position where the wiping roller assembly (102) is moved out of the wiping tank (101) and away from the intaglio printing cylinder (80). Preferably, the wiping roller assembly (102) comprises a rotatable hollow cylindrical body (110) having an outer surface (110a) positioned to wipe the surface of the intaglio printing cylinder (80).
Abstract:
There is described an intaglio printing plate coating apparatus (1) comprising a vacuum chamber (3) having an inner space (30) adapted to receive at least one intaglio printing plate (10) to be coated, a vacuum system (4) coupled to the vacuum chamber (3) for creating vacuum in the inner space (30) of the vacuum chamber (3), and a physical vapour deposition (PVD) system (5) for the deposition of wear-resistant coating material under vacuum onto an engraved surface (10a) of the intaglio printing plate (10), which physical vapour deposition system (5) includes at least one coating material target (51, 52) comprising a source of the wear-resistant coating material to be deposited onto the engraved surface (10a) of the intaglio printing plate (10). The vacuum chamber (3) is arranged so that the intaglio printing plate (10) to be coated sits substantially vertically in the inner space (30) of the vacuum chamber (3) with its engraved surface (10a) facing the at least one coating material target (51, 52). The intaglio printing plate coating apparatus (1) further comprises a movable carrier (6) located within the inner space (30) of the vacuum chamber (3) and adapted to support and cyclically move the intaglio printing plate (10) in front of and past the at least one coating material target (51, 52).
Abstract:
There is described an intaglio printing plate coating apparatus (1) comprising a vacuum chamber (3) having an inner space (30) adapted to receive at least one intaglio printing plate (10) to be coated, a vacuum system (4) coupled to the vacuum chamber (3) adapted to create vacuum in the inner space (30) of the vacuum chamber (3), and a physical vapour deposition (PVD) system (5) adapted to perform deposition of wear-resistant coating material under vacuum onto an engraved surface (10a) of the intaglio printing plate (10), which physical vapour deposition system (5) includes at least one coating material target (51, 52) comprising a source of the wear-resistant coating material to be deposited onto the engraved surface (10a) of the intaglio printing plate (10). The vacuum chamber (3) is arranged so that the intaglio printing plate (10) to be coated sits substantially vertically in the inner space (30) of the vacuum chamber (3) with its engraved surface (10a) facing the at least one coating material target (51, 52). The intaglio printing plate coating apparatus (1) further comprises a movable carrier (6) located within the inner space (30) of the vacuum chamber (3) and adapted to support and cyclically move the intaglio printing plate (10) in front of and past the at least one coating material target (51, 52).
Abstract:
There is described an intaglio printing plate coating apparatus (1) comprising a vacuum chamber (3) having an inner space (30) adapted to receive at least one intaglio printing plate (10) to be coated, a vacuum system (4) coupled to the vacuum chamber (3) adapted to create vacuum in the inner space (30) of the vacuum chamber (3), and a physical vapour deposition (PVD) system (5) adapted to perform deposition of wear-resistant coating material under vacuum onto an engraved surface (10a) of the intaglio printing plate (10), which physical vapour deposition system (5) includes at least one coating material target (51, 52) comprising a source of the wear-resistant coating material to be deposited onto the engraved surface (10a) of the intaglio printing plate (10). The vacuum chamber (3) is arranged so that the intaglio printing plate (10) to be coated sits substantially vertically in the inner space (30) of the vacuum chamber (3) with its engraved surface (10a) facing the at least one coating material target (51, 52). The intaglio printing plate coating apparatus (1) further comprises a movable carrier (6) located within the inner space (30) of the vacuum chamber (3) and adapted to support and cyclically move the intaglio printing plate (10) in front of and past the at least one coating material target (51, 52). The movable carrier (6) is adapted to translate the intaglio printing plate (10) back and forth within the inner space (30) of the vacuum chamber (3) and along a translation path (T) in front of and past the at least one coating material target (51, 52). The movable carrier (6) is also guided along the translation path (T) by way of lower and upper guiding rails (61, 62) which are secured to lower and upper inner walls of the vacuum chamber (3).