Abstract:
Target designs and methods are provided, which relate to periodic structures having elements recurring with a first pitch in a first direction. The elements are periodic with a second pitch along a second direction that is perpendicular to the first direction and are characterized in the second direction by alternating, focus-sensitive and focus-insensitive patterns with the second pitch. In the produced targets, the first pitch may be about the device pitch and the second pitch may be several times larger. The first, focus-insensitive pattern may be produced to yield a first critical dimension and the second, focus-sensitive pattern may be produced to yield a second critical dimension that may be equal to the first critical dimension only when specified focus requirements are satisfied, or provide scatterometry measurements of zeroth as well as first diffraction orders, based on the longer pitch along the perpendicular direction.
Abstract:
Methods and systems for monitoring parameters characterizing a set of hot spot structures fabricated at different locations on a semiconductor wafer are presented herein. The hot spot structures are device structures that exhibit sensitivity to process variations and give rise to limitations on permissible process variations that must be enforced to prevent device failures and low yield. A trained hot spot measurement model is employed to receive measurement data generated by one or more metrology systems at one or more metrology targets and directly determine values of one or more hot spot parameters. The hot spot measurement model is trained to establish a functional relationship between one or more characteristics of a hot spot structure under consideration and corresponding measurement data associated with measurements of at least one metrology target on the same wafer. A fabrication process parameter is adjusted based on the value of a measured hot spot parameter.
Abstract:
Methods and systems for creating a measurement model based on measured training data are presented. The trained measurement model is used to calculate process parameter values, structure parameter values, or both, directly from measured data collected from other wafers. The measurement models receive measurement data directly as input and provide process parameter values, structure parameter values, or both, as output. The measurement model enables the direct measurement of process parameters. Measurement data from multiple targets is collected for model building, training, and measurement. In some examples, the use of measurement data associated with multiple targets eliminates, or significantly reduces, the effect of under layers in the measurement result, and enables more accurate measurements. Measurement data collected for model building, training, and measurement, may be derived from measurements performed by a combination of multiple, different measurement techniques.