Abstract:
Provided are a method of manufacturing a quantum-dot photoactive-layer including: alternately depositing an amorphous silicon compound layer and a silicon-rich compound layer containing conductive impurities and an excess of silicon based on a stoichiometric ratio on a silicon substrate to form a composite multi-layer; and heat treating the composite multi-layer to form a plurality of silicon quantum-dots in a matrix corresponding to a silicon compound, wherein an amorphous silicon layer containing the conductive impurities is formed at least one time instead of the silicon-rich compound layer, and a quantum-dot photoactive-layer manufactured using the method as described above.
Abstract:
Provided are a method of manufacturing a quantum-dot photoactive-layer including: alternately depositing an amorphous silicon compound layer and a silicon-rich compound layer containing conductive impurities and an excess of silicon based on a stoichiometric ratio on a silicon substrate to form a composite multi-layer; and heat treating the composite multi-layer to form a plurality of silicon quantum-dots in a matrix corresponding to a silicon compound, wherein an amorphous silicon layer containing the conductive impurities is formed at least one time instead of the silicon-rich compound layer, and a quantum-dot photoactive-layer manufactured using the method as described above.
Abstract:
Provided are a lateral p-n junction black phosphorus thin film, and a method of manufacturing the same, and specifically, a lateral p-n junction black phosphorus thin film in which a p-type black phosphorus thin film having a p-type semiconductor property and a n-type black phosphorus thin film having a n-type semiconductor property form a lateral junction by modifying some regions on a surface of the black phosphorus thin film through light irradiation with a compound having a specific chemical structure, and a method of manufacturing the same.