Abstract:
Provided is a method of calibrating a nano measurement scale using a standard material including: measuring widths of a plurality of nanostructures included in the standard material and having pre-designated certified values of different sizes by a microscope; determining measured values for the widths of each of the plurality of nanostructures measured by the microscope based on a predetermined criterion; and calibrating a measurement scale of the microscope based on the certified values and the measured values.
Abstract:
Provided are a method of manufacturing a quantum-dot photoactive-layer including: alternately depositing an amorphous silicon compound layer and a silicon-rich compound layer containing conductive impurities and an excess of silicon based on a stoichiometric ratio on a silicon substrate to form a composite multi-layer; and heat treating the composite multi-layer to form a plurality of silicon quantum-dots in a matrix corresponding to a silicon compound, wherein an amorphous silicon layer containing the conductive impurities is formed at least one time instead of the silicon-rich compound layer, and a quantum-dot photoactive-layer manufactured using the method as described above.
Abstract:
Provided are a method of manufacturing a quantum-dot photoactive-layer including: alternately depositing an amorphous silicon compound layer and a silicon-rich compound layer containing conductive impurities and an excess of silicon based on a stoichiometric ratio on a silicon substrate to form a composite multi-layer; and heat treating the composite multi-layer to form a plurality of silicon quantum-dots in a matrix corresponding to a silicon compound, wherein an amorphous silicon layer containing the conductive impurities is formed at least one time instead of the silicon-rich compound layer, and a quantum-dot photoactive-layer manufactured using the method as described above.