Abstract:
In accordance with one embodiment of the present disclosure, an assembly is provided comprising a multi-component electrode and a peripherally engaging electrode carrier. The peripherally engaging electrode carrier comprises a carrier frame and a plurality of reciprocating electrode supports. The multi-component electrode is positioned in the electrode accommodating aperture of the carrier frame. The backing plate of the electrode comprises a plurality of mounting recesses formed about its periphery. The reciprocating electrode supports can be reciprocated into and out of the mounting recesses. Additional embodiments of broader and narrower scope are contemplated.
Abstract:
A process for reconditioning a multi-component electrode comprising a silicon electrode bonded to an electrically conductive backing plate is provided. The process comprises: (i) removing metal ions from the multi-component electrode by soaking the multi-component electrode in a substantially alcohol-free DSP solution comprising sulfuric acid, hydrogen peroxide, and water and rinsing the multi-component electrode with de-ionized water; (ii) polishing one or more surfaces of the multi-component electrode following removal of metal ions there from; and (iii) removing contaminants from silicon surfaces of the multi-component electrode by treating the polished multi-component electrode with a mixed acid solution comprising hydrofluoric acid, nitric acid, acetic acid, and water and by rinsing the treated multi-component electrode with de-ionized water. Additional embodiments of broader and narrower scope are contemplated.
Abstract:
A carrier assembly is provided comprising a backside mounted electrode carrier and electrode mounting hardware. The backside mounted electrode carrier comprises an electrode accommodating aperture, which in turn comprises a sidewall structure that is configured to limit lateral movement of an electrode positioned in the aperture. The electrode accommodating aperture further comprises one or more sidewall projections that support the weight of an electrode positioned in the aperture. The electrode mounting hardware is configured to engage an electrode positioned in the electrode accommodating aperture from the backside of the carrier and urge the electrode against the sidewall projections so as to limit axial movement of the electrode in the electrode accommodating aperture. Additional embodiments of broader and narrower scope are contemplated.