Abstract:
In accordance with one embodiment of the present disclosure, an assembly is provided comprising a multi-component electrode and a peripherally engaging electrode carrier. The peripherally engaging electrode carrier comprises a carrier frame and a plurality of reciprocating electrode supports. The multi-component electrode is positioned in the electrode accommodating aperture of the carrier frame. The backing plate of the electrode comprises a plurality of mounting recesses formed about its periphery. The reciprocating electrode supports can be reciprocated into and out of the mounting recesses. Additional embodiments of broader and narrower scope are contemplated.
Abstract:
A process for reconditioning a multi-component electrode comprising a silicon electrode bonded to an electrically conductive backing plate is provided. The process comprises: (i) removing metal ions from the multi-component electrode by soaking the multi-component electrode in a substantially alcohol-free DSP solution comprising sulfuric acid, hydrogen peroxide, and water and rinsing the multi-component electrode with de-ionized water; (ii) polishing one or more surfaces of the multi-component electrode following removal of metal ions there from; and (iii) removing contaminants from silicon surfaces of the multi-component electrode by treating the polished multi-component electrode with a mixed acid solution comprising hydrofluoric acid, nitric acid, acetic acid, and water and by rinsing the treated multi-component electrode with de-ionized water. Additional embodiments of broader and narrower scope are contemplated.
Abstract:
A carrier assembly is provided comprising a backside mounted electrode carrier and electrode mounting hardware. The backside mounted electrode carrier comprises an electrode accommodating aperture, which in turn comprises a sidewall structure that is configured to limit lateral movement of an electrode positioned in the aperture. The electrode accommodating aperture further comprises one or more sidewall projections that support the weight of an electrode positioned in the aperture. The electrode mounting hardware is configured to engage an electrode positioned in the electrode accommodating aperture from the backside of the carrier and urge the electrode against the sidewall projections so as to limit axial movement of the electrode in the electrode accommodating aperture. Additional embodiments of broader and narrower scope are contemplated.
Abstract:
The present invention provides a reliable, non-invasive, electrical test method for predicting satisfactory performance of electrostatic chucks (ESCs). In accordance with an aspect of the present invention, a parameter, e.g., impedance, of an ESC is measured over a frequency band to generate a parameter functions. This parameter function may be used to establish predetermined acceptable limits of the parameter within the frequency band.
Abstract:
A method of wet cleaning an aluminum part having bare aluminum surfaces and anodized aluminum surfaces. The method includes CO2 dry ice blasting the surfaces of the aluminum part at approximately 35 to approximately 45 psi, masking the aluminum part to conceal the bare aluminum surfaces, soaking the dry ice blasted and masked aluminum part in deionized water at or above approximately 60° C., scrubbing the aluminum part with an abrasive pad and deionized water after completion of the soaking in deionized water, and repeating the soaking and scrubbing in the recited order at least three additional times.
Abstract:
SYSTEM AND METHOD FOR TESTING AN ELECTROSTATIC CHUCKThe present invention provides a reliable, non-invasive, electrical test method for predicting satisfactory performance of electrostatic chucks (ESCs). In accordance with an aspect of the present invention, a parameter, e.g., impedance, of an ESC is measured over a frequency band to generate a parameter functions. This parameter function may be used to establish predetermined acceptable limits of the parameter within the frequency band.FIGS
Abstract:
PLASMA PROCESSING DEVICES WITH CORROSION RESIST ANT COMPONENTS In one embodiment, a plasma processing device may include a plasma processing chamber, a plasma region, an energy source, and a corrosion resistant component. The plasma processing chamber can be maintained at a vacuum pressure and can confine a plasma processing gas. The energy source can transmit energy into the plasma processing chamber and transform at least a portion of the plasma processing gas into plasma within the plasma region. The corrosion resistant component can be located within the plasma processing chamber. The corrosion resistant component can be exposed to the plasma processing gas and is not coincident with the plasma region. The corrosion resistant component may include an inner layer of stainless steel that is coated with an outer layer of Tantalum CTa). FIG. 1 15
Abstract:
PLASMA PROCESSING DEVICES WITH CORROSION RESISTANT COMPONENTSIn one embodiment, a plasma processing device may include a plasma processing chamber, a plasma region, an energy source, and a corrosion resistant component. The plasma processing chamber can be maintained at a vacuum pressure and can confine a plasma processing gas. The energy source can transmit energy into the plasma processing chamber and transform at least a portion of the plasma processing gas into plasma within the plasma region. The corrosion resistant component can be located within the plasma processing chamber. The corrosion resistant component can be exposed to the plasma processing gas and is not coincident with the plasma region. The corrosion resistant component may include an inner layer of stainless steel that is coated with an outer layer of Tantalum (Ta).FIG. 1