Abstract:
A MEMS micro-mirror assembly (250, 300, 270, 400) comprising, a MEMS device (240) which comprises a MEMS die (241) and a magnet (231); a flexible PCB board (205) to which the MEMS device (240) is mechanically, and electrically, connected; wherein the flexible PCB board (205) further comprises a first extension portion (205b) which comprises a least one electrical contact (259a,b) which is useable to electrically connect the MEMS micro-mirro rassembly (250, 300, 270, 400) to another electrical component). There is further provided a projection system comprising such a MEMS micro-mirror assembly (250, 300, 270, 400).
Abstract:
A MEMS micro-mirror device comprising, a MEMS micro-mirror, a support structure and, a first and second torsional arm which each connect the MEMS micro-mirror to the support structure, wherein the first and second torsional arms are arranged to define a first oscillation axis about which the MEMS micro-mirror can oscillate; a single actuation coil for oscillating the MEMS micro mirror about the first oscillation axis, at least a portion of the single actuation coil being arranged to cooperate with the MEMS micro mirror; a magnet which is arranged such that a magnetic field generated by the magnet submerges at least the portion of the single actuation coil which cooperates with the MEMS micro mirror; wherein the single actuation coil is configured to extend along the first and second torsional arms.
Abstract:
A micro-projection system for projecting light on a projection surface (104), comprising: -at least one coherent light source (101); -optical elements (102, 108, 109) in the optical path between said coherent light source and said projection surface; -said optical elements including at least one reflective member (102) actuated by a drive signal for deviating light from said light source so as to scan a projected image onto said projecting surface; -said optical elements including at least one pixel displacement unit (106) for providing a displacement signal synchronized with the image scanning signal so as to reduce speckle onto said projecting surface. The corresponding method for reducing speckle is also provided.
Abstract:
Optical MEMS scanning micro-mirror comprising: -a movable scanning micro-mirror (101), being pivotally connected to a MEMS body (102) substantially surrounding the lateral sides of the micro-mirror, -a transparent window (202) substantially covering the reflection side of the micro-mirror; -wherein a piezo-actuator assembly (500) and a layer of deformable transparent material (501) are provided on the outer portion of said window (202); -the piezo-actuator assembly (500) being arranged at the periphery of the layer of transparent material (501); -said piezo-actuator assembly (500) and transparent material (501) cooperating so that when actuated, the piezo-actuator assembly (500) causes micro-deformation of the transparent material (501), thereby providing an anti-speckle effect. The invention also provides the corresponding micro-projection system and method for reducing speckle.
Abstract:
L'invention concerne un micromiroir comportant une plaquette réfléchissante (21) mobile en rotation autour d'un axe (32) et fixée à un cadre (23) par deux bras parallèles (27, 29) alignés de part et d'autre de la plaquette de façon à former l'axe, l'ensemble du cadre et de la plaquette étant fixé sur un support, le micromiroir comportant au moins une couche aimantée (39, 40).
Abstract:
According to the present invention there is provided an actuator comprising, a movable member, the movable member comprising a support frame which is configured such that it can oscillate about a first oscillation axis and a mirror which is fixed to the support frame such that oscillation of the support frame will effect oscillation of the mirror; an coil, which cooperates with the support frame; one or more boundary portions provided between the support frame and the mirror which reduce the influence of warp transmitted from an edge of the support frame to the mirror, as the support frame oscillates about the first oscillation axis; wherein the support frame further comprises one or more cut-out regions, wherein the one or more cut-out regions are configured to be parallel to at least a portion of the coil, to reduce stress on the coil as the support frame oscillates about the first oscillation axis and/or to reduce the temperature dependence of the properties of the actuator.
Abstract:
An optical micro-projection system comprising the following components: at least one laser light source (200, 400, 402, 600); at least one movable mirror (102, 103, 203) for deviating light from said light source to allow generation of images on a projection surface (104, 301, 303, 306, 603); a self mixing module for measurement of the distance (604) between the projection source and a projection surface, said self mixing module comprising: —at least one photodiode (401, 601) for monitoring the light emission power of the laser light source; —an optical power variation counter for counting optical power variations (605); successive displacements of said mirror allowing the self mixing module providing successive projection distance measurements of a plurality of points of said projection surface. A projection method for optical micro-projection system and a distance measurement method are also provided.
Abstract:
The invention relates to a micromirror comprising a reflecting plate (21) rotatably movable around an axis (32) and attached to a frame (23) by two parallel arms (27, 29) aligned on both sides of the plate to form the axis, the assembly of the frame and the plate being attached to a substrate, the micromirror comprising at least one magnetized layer (39, 40).
Abstract:
A MEMS micro-mirror assembly (250, 300, 270, 400) comprising, a MEMS device (240) which comprises a MEMS die (241) and a magnet (231); a flexible PCB board (205) to which the MEMS device (240) is mechanically, and electrically, connected; wherein the flexible PCB board (205) further comprises a first extension portion (205b) which comprises a least one electrical contact (259a,b) which is useable to electrically connect the MEMS micro-mirror assembly (250, 300, 270, 400) to another electrical component). There is further provided a projection system comprising such a MEMS micro-mirror assembly (250, 300, 270, 400).