Abstract:
An apparatus is disclosed that substantially reduces or eliminates the resonance that occurs in vias that connect the layers of a printed circuit board by electrically coupling a first transmission line (704) in a circuit board to a second transmission line (705) in a circuit board by two electrical paths (706,707) having substantially the same electrical length. The two electrical paths are created by connecting the first transmission line to a first via which is in turn connected to a second via having a second transmission line with a plurality of connecting electrical paths between the two vias. In one illustrative embodiment, electrical traces are used to connect the top of the first via to the top of the second via and the bottom of the first via to the bottom of the second via.
Abstract:
An apparatus includes a 3D array of circuit elements and control lines for coupling a remote control device to the circuit elements in the array. Each circuit element is configured to transform from one circuit state to another circuit state in response to a change in a control signal received from one of the control lines. The 3D array includes a region that behaves as a metamaterial in a selected frequency when the circuit elements of the region are in one set of circuit states and as a normal refractive medium in the selected frequency when the circuit elements of the region are another set of circuit states.
Abstract:
A modulation method, transmission method, and transmitter circuit are described which may enable realization of a wireless link for ultra-high transmission rates in the downlink to users. In a method of modulating an input signal to obtain a desired intermediate signal, the intermediate signal is to be processed for transmission over a wireless link at a carrier frequency within a desired frequency band. The processing may include subjecting the intermediate signal to a frequency multiplier operation that exhibits an ambiguous transfer function. In the modulation method, an input signal is provided, and a set of signal states applicable to the desired intermediate signal are generated so that a signal output from the frequency multiplier operation has a substantially non-ambiguous relation to the desired intermediate signal. The input signal may thus be modulated according to I and Q baseband signals to obtain the desired intermediate signal with the generated set of signal states.