Abstract:
An optical wavelength add/drop multiplexer (WADM) is configured to add or drop two or more signals each associated with one of a plurality of channels in a wavelength division multiplexed (WDM) signal. The WADM comprises an optical circulator that is optically coupled at one port to two or more serially interconnected fiber Bragg gratings (FBGs), and is optically coupled at another port to a thin film filter including two or more serially interconnected thin film filter elements. Each of the two or more FBGs is matched with a thin film filter element, both arranged to be responsive to signals associated with one of the plurality of channels. Bandwidth and dispersion properties for the FBGs are selected to permit operation of the WADM at two distinct signal data rates. To equalize associated insertion losses in embodiments of the invention arranged to add or drop two or more signals, the FBGs are matched to the thin film filter elements in inverse order with respect to their optical distance from the optical circulator.
Abstract:
An optical wavelength add/drop multiplexer (WADM) is configured to add or drop two or more signals each associated with one of a plurality of channels in a wavelength division multiplexed (WDM) signal. The WADM comprises an optical circulator that is optically coupled at one port to two or more serially interconnected fiber Bragg gratings (FBGs), and is optically coupled at another port to a thin film filter including two or more serially interconnected thin film filter elements. Each of the two or more FBGs is matched with a thin film filter element, both arranged to be responsive to signals associated with one of the plurality of channels. Bandwidth and dispersion properties for the FBGs are selected to permit operation of the WADM at two distinct signal data rates. To equalize associated insertion losses in embodiments of the invention arranged to add or drop two or more signals, the FBGs are matched to the thin film filter elements in inverse order with respect to their optical distance from the optical circulator.
Abstract:
A Raman amplified transmission includes at least two pump sources to provide amplification to optical signals residing in the C-band (1530 - 1562nm) and L-band (1574 - 1604nm). The pump signals are chosen so as to provide for a relatively flat and wide composite gain spectrum with a width at least 50% greater than that generated by a monochromatic pump, while also chosen so as to prevent any four-wave mixing products from being in either the C- or L-bands.
Abstract:
In accordance with the invention, an optical communication system is provided with one or more automatic dispersion compensation modules. Each module has an adjustable dispersion element, a data integrity monitor and a feedback network whereby the monitor adjusts the dispersion element to optimize system performance. In a preferred embodiment the dispersion compensating modules comprise chirped fiber Bragg gratings in which the chirp is induced in the grating by passing a current along distributed thin film heaters deposited along the length of the fiber. The magnitude of the applied current determines the dispersion of the grating. A data integrity monitor is configured to sense the integrity of transmitted data and to provide electrical feedback for controlling the current applied to the grating.
Abstract:
A Raman amplified transmission includes at least two pump sources to provide amplification to optical signals residing in the C-band (1530 - 1562nm) and L-band (1574 - 1604nm). The pump signals are chosen so as to provide for a relatively flat and wide composite gain spectrum with a width at least 50% greater than that generated by a monochromatic pump, while also chosen so as to prevent any four-wave mixing products from being in either the C- or L-bands.
Abstract:
In an optical communication system, the signal power level injected into each of one or more optical fiber spans is reduced so as to suppress undesired non-linear effects. This reduction in injected signal level is made possible by remotely pumped amplification in the spans that are affected.
Abstract:
In accordance with the invention a multiwavelength optical fiber cross connect is provided with an active all-fiber optical router for multiplexing/demultiplexing. The router is comprised of one electronic component -- a phase controller -- and four fiber components: 1) a fiber directional coupler, 2) a fiber reflective grating filter, 3) a fiber tap, and 4) a fiber phase modulator. The application describes how to make optical routers from these components ranging in complexity from a single wavelength drop router to an N-port, N-wavelength router for add/drop multiplexing. The application also describes how optical wavelength routers can be combined to create optical fiber Cross connect (OXCs), ranging in complexity from 2X2 single wavelength OXCs to NXN, M-wavelength OXCs.