Abstract:
In a WDM fiber-optic network, a unique laser transmitter enables signals to be routed at three hierarchical levels: at one level discrimination among signal paths is based on N WDM wavelength channels, at another level discrimination is based on m AM subcarrier frequency channels, and at a third level discrimination is based on n FM subcarrier frequency channels. Thus, a total of Nmn distinguishable optical channels can be accommodated and a like number of users served. The laser transmitter comprises a broadband, tunable semiconductor laser which includes an intracavity, integrated composite reflector to which a tuning voltage and a FM dither signal are applied, an intracavity gain section to which drive current is applied, and an extracavity, integrated electroabsorption modulator to which an information (e.g., data, voice, video) signal and an AM dither signal are applied. The tuning voltage provides coarse wavelength tuning among N WDM channels, whereas the FM dither signal produces an additional m channels via FM-SCM. The AM dither likewise produces an additional n channels via AM-SCM.
Abstract:
An optical receiving system includes a Fresnel lens optically coupled to a detector via a tapered concentrator. The Fresnel lens is adapted to receive an electromagnetic signal and has a Fresnel focal point. The tapered concentrator has a first end surface area larger than a second end surface area. The detector has a sensing surface area oriented to receive the electromagnetic signal emerging from the tapered concentrator.
Abstract:
A tunable semiconductor laser comprises a gain section having an MQW active region, a uniform pitch grating DFB region, and first waveguide. A composite reflector, including a second MQW region and a second waveguide, forms a cavity resonator with the DFB region. A voltage applied to the composite reflector induces a quantum confined stark effect, thereby allowing the wavelength to be altered. In one embodiment, the current drive to the active region and the shape of the first waveguide (e.g., a raised-sine function) are mutually adapted so that N longitudinal modes have essentially the same threshold gain and so that the DFB region spanned by the first waveguide is segmented into N zones, each zone providing optical feedback at a different wavelength corresponding to a different longitudinal mode.
Abstract:
A tunable semiconductor laser comprises a gain section having an MQW active region, a uniform pitch grating DFB region, and first waveguide. A composite reflector, including a second MQW region and a second waveguide, forms a cavity resonator with the DFB region. A tuning voltage applied to the composite reflector induces a quantum confined stark effect, thereby allowing the center wavelength to be altered. A pre-chirp signal applied the composite reflector reduces signal distortion in fiber optic systems.
Abstract:
An optical receiving system includes a Fresnel lens optically coupled to a detector via a tapered concentrator. The Fresnel lens is adapted to receive an electromagnetic signal and has a Fresnel focal point. The tapered concentrator has a first end surface area larger than a second end surface area. The detector has a sensing surface area oriented to receive the electromagnetic signal emerging from the tapered concentrator.
Abstract:
An optical fiber communications system is provided with an adaptive data equalizer (101) to correct for linear distortion of signals transmitted over optical fibers (103). In particular, a feedback signal from a receiver (104) is used to custom tailor the spectral profile of a launched pulse and thereby to minimize the distortion of the received pulse. Because the system uses feedback control, it will adapt for changing conditions in the fiber path. Conveniently, the adaptation process is incurred during the training (sounding) session of a data frame when a train of pulses are sent through the network and looped back. After the training is completed, the loop-back path (106) is disconnected, and data transmission begins with the transmitted pulses pre-distorted to adapt to the connected network.
Abstract:
A tunable semiconductor laser (10) comprises a gain section (12) having an MQW active region (12.1), a uniform pitch grating DFB region (12.2), and first waveguide (12.3). A composite reflector (14), including a second MQW region (14.1) and a second waveguide (14.3), forms a cavity resonator with the DFB region (12.2). A tuning voltage applied to the composite reflector (14) induces refractive index changes, thereby allowing the center wavelength to be altered. A dither signal applied the composite reflector broadens the spectrum of the laser output, thereby reducing SBS in fiber optic systems.
Abstract:
An optical fiber communications system is provided with an adaptive data equalizer (101) to correct for linear distortion of signals transmitted over optical fibers (103). In particular, a feedback signal from a receiver (104) is used to custom tailor the spectral profile of a launched pulse and thereby to minimize the distortion of the received pulse. Because the system uses feedback control, it will adapt for changing conditions in the fiber path. Conveniently, the adaptation process is incurred during the training (sounding) session of a data frame when a train of pulses are sent through the network and looped back. After the training is completed, the loop-back path (106) is disconnected, and data transmission begins with the transmitted pulses pre-distorted to adapt to the connected network.