Abstract:
Various systems and methods of operating an analyte measurement device is provided. The device has a display, user interface, processor, memory and user interface buttons. In one example, one of the methods can be achieved by measuring an analyte with the analyte measurement device; displaying a value representative of the analyte; prompting a user to activate a test reminder; and activating the test reminder to remind a user to conduct a test measurement at a different time. Other methods and systems are also described and illustrated.
Abstract:
An electrochemical-based analytical test strip for the determination of an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) and/or a characteristic of the bodily fluid sample (e.g., hematocrit) includes a sample-entry chamber with a sample-application opening disposed on an end edge of the electrochemical-based analytical test strip, and first and second sample-determination chambers, each in direct fluidic communication with the sample-entry chamber. The electrochemical-based analytical test strip also includes first and second electrodes (such as first and second hematocrit electrodes) disposed in the first sample-determination chamber, and a third and fourth electrodes (for example working and reference electrodes) disposed in the second sample-determination chamber. Moreover, the first and second sample-determination chambers intersect the sample-entry chamber perpendicular (or nearly perpendicular) to one another and the first sample-determination chamber also intersects the sample-entry chamber in an aligned manner.
Abstract:
Various embodiments for methods and systems that allow for detecting of a direction in which a sample is flowing towards a plurality of electrodes and detecting a fill error of an electrochemical test strip.
Abstract:
Various embodiments for methods and systems that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic of the sample containing the analyte and deriving one of a batch slope, sampling time, or combinations thereof to attain accurate glucose concentration.
Abstract:
An analytical test strip for the determination of an analyte (such as glucose and/or hematocrit) in a bodily fluid sample (such as a whole blood sample) includes a first capillary sample-receiving chamber, a second capillary sample-receiving chamber, and a physical barrier island disposed between the first and second capillary sample-receiving chambers. Moreover, the physical island barrier is disposed such that bodily fluid sample flow between the first capillary sample-receiving chamber and the second capillary sample-receiving chamber is prevented during use of the analytical test strip.
Abstract:
Various embodiments for a method that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic, typically hematocrit, of the sample containing the analyte and deriving from this characteristic a parameter relating to the biosensor to attain accurate glucose concentration.
Abstract:
Various embodiments for methods and systems that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic of the sample containing the analyte and deriving one of a batch slope, sampling time, or combinations thereof to attain accurate glucose concentration.
Abstract:
Various embodiments for a method that allow for a more accurate analyte concentration with a biosensor by determining at least one physical characteristic of the sample and determining whether a counter or reference electrode is causing an error by monitoring the working electrodes and flagging an error if the signal outputs of the working electrodes do not meet certain thresholds.
Abstract:
Described are methods and systems to allow the use of a very simple physiological meter without a user input interface (i.e., buttonless) while maintaining the ability to store time linked measurement records for retrospective or prospective analysis of the measured physiological measurements with a bistable display to allow for a display of plural prior physiological measurements without necessitating the activation (e.g., turning on or manipulation of the user input interfaces) of the physiological meter.