Abstract:
An electrochemical-based analytical test strip for the determination of an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) and/or a characteristic of the bodily fluid sample (e.g., hematocrit) includes a sample-entry chamber with a sample-application opening disposed on an end edge of the electrochemical-based analytical test strip, and first and second sample-determination chambers, each in direct fluidic communication with the sample-entry chamber. The electrochemical-based analytical test strip also includes first and second electrodes (such as first and second hematocrit electrodes) disposed in the first sample-determination chamber, and a third and fourth electrodes (for example working and reference electrodes) disposed in the second sample-determination chamber. Moreover, the first and second sample-determination chambers intersect the sample-entry chamber perpendicular (or nearly perpendicular) to one another and the first sample-determination chamber also intersects the sample-entry chamber in an aligned manner.
Abstract:
An analyte measurement system includes a processor connected to a biosensor providing analyte data corresponding to an analyte level of a fluid sample. A user interface provides a menu of functions to a user and successively receives a plurality of menu choices, which the processor records. A storage device holds data defining a first action criterion. The processor compares the menu choices to the first action criterion. When the stored menu choices satisfy the first action criterion, the processor can automatically add a first additional function to the menu of functions, or can automatically presents a reward token via the user interface. The system can also include a housing holding the user interface, the storage device, and the processor. Methods are also disclosed.
Abstract:
An analyte measurement system includes a processor connected to a biosensor providing analyte data corresponding to an analyte level of a fluid sample. A user interface provides a menu of functions to a user and successively receives a plurality of menu choices, which the processor records. A storage device holds data defining a first action criterion. The processor compares the menu choices to the first action criterion. When the stored menu choices satisfy the first action criterion, the processor can automatically add a first additional function to the menu of functions, or can automatically presents a reward token via the user interface. The system can also include a housing holding the user interface, the storage device, and the processor. Methods are also disclosed.
Abstract:
A test strip for use with an analyte meter comprises an integrated power source, such as a battery wherein the test strip is configured upon insertion into the meter to provide sufficient power for completing a sample assay without requiring a separate power source in the meter.
Abstract:
A portable analytical test meter is designed for use with an associated analytical test strip. A test-strip-receiving module receives the analytical test strip and is electrically connected to a dummy load calibration circuit block. That block is configured to provide a dummy magnitude correction and a dummy phase correction; and a memory block is configured to store the dummy magnitude correction and the dummy phase correction. A method for calibrating a portable analytical test meter for use with an analytical test strip includes determining a dummy magnitude correction and a dummy phase correction of the portable analytical test meter using a dummy load calibration circuit block of the portable analytical test meter. The dummy magnitude correction and the dummy phase correction are stored in a memory block of the portable analytical test meter. Using the stored dummy magnitude correction and stored dummy phase correction, an analyte is determined.
Abstract:
An analyte meter having a test strip port is configured to detect whether an approved test strip has been inserted into the test strip port before turning on analyte measurement subsystems in the analyte meter. After the meter is turned on, control circuitry in the meter continues to monitor whether the test strip is removed prior to application of a blood sample on the test strip or whether the test strip is removed after application of a blood sample on the test strip, such as during an assay of the sample.
Abstract:
A physiological measurement system includes a biosensor providing a signal for a fluid sample. A processor determines a physiological parameter in the form of an analyte concentration using the signal from the biosensor. A network interface conveys data between the processor and a social network. The processor can transmit a query for analyte-data-request records to the social network, receive an indication of an analyte-data-request record from the social network, and transmit the determined analyte data or physiologic data to the social network in response to the indication. The processor can alternatively retrieve user credentials from a storage device, transmit the credentials and the analyte data to the social network, retrieve from the social network different-user response data corresponding to the transmission, and present an indication of the response data. Methods for processing analyte or physiologic data are also described. Various methods include transmitting credentials and the stored analyte or physiologic data to the social network.
Abstract:
An analyte meter is configured to digitally test for the presence of a test strip in the meter and for the presence of a sample in the test strip prior to activating an analog current measurement circuit of the meter. A test strip port connector having a plurality of contacts receives an inserted test strip in which the contacts electrically connect to electrodes on the test strip for digitally detecting both the presence of a test strip and a sample added to the test strip. A control circuit monitoring the contacts maintains the analyte meter in a low power mode until detecting both the test strip and the sample, whereupon the control circuit activates the meter and enables an analog analyte measurement circuit.
Abstract:
A test strip for use with an analyte meter comprises an integrated power source, such as a battery wherein the test strip is configured upon insertion into the meter to provide sufficient power for completing a sample assay without requiring a separate power source in the meter.