Abstract:
The present invention is a long gas barrier laminate including a base, a functional layer, a smoothing layer, and a gas barrier layer,
the functional layer being stacked on one side of the base, the smoothing layer and the gas barrier layer being sequentially stacked on the other side of the base, and a coefficient of static friction between a surface of the functional layer that is situated opposite to the base and a surface of the gas barrier layer that is situated opposite to the base being 0.35 to 0.80; and a method for producing the long gas barrier laminate.
Abstract:
The present invention is a gas barrier film laminate comprising at least two gas barrier films and a bonding layer, the at least two gas barrier films being stacked through the bonding layer, the bonding layer having a configuration in which a pressure-sensitive adhesive layer is contiguously stacked on each side of a base film A, the base film A being formed of a synthetic resin having a tensile modulus at 23°C of 3000 to 10,000 MPa. The present invention is also an electronic device member comprising the gas barrier film laminate. According to the present invention, provided are a gas barrier film laminate that exhibits an excellent gas barrier capability and excellent bendability, an electronic device member that includes the gas barrier film laminate, and an electronic device that includes the electronic device member.
Abstract:
The invention is a formed article including a gas barrier layer, the gas barrier layer including a surface layer part that is formed of a material that includes at least a carbon atom, an oxygen atom, and a silicon atom, the surface layer part having a carbon atom content rate of more than 0 and not more than 70%, an oxygen atom content rate of 10 to 70%, a nitrogen atom content rate of 0 to 35%, and a silicon atom content rate of 20 to 55%, based on a total content rate of carbon atoms, oxygen atoms, nitrogen atoms, and silicon atoms; a method for producing the formed article; an electronic device member including the formed article; and an electronic device comprising the electronic device member. The formed article of the invention exhibits an excellent gas barrier capability, excellent transparency, and excellent bending resistance. The method for producing a formed article of the invention can efficiently, safely, and conveniently produce the formed article of the invention. The electronic device member of the invention may suitably be used for electronic devices such as displays and solar cells.
Abstract:
Provided a formed article comprising a layer that includes a polysilazane compound and a clay mineral, and having a water vapor transmission rate at a temperature of 40°C and a relative humidity of 90% of 6.0 g/m 2 /day or less. Also provided are a method for producing the formed article, an electronic device member including the formed article, and an electronic device including the electronic device member. The formed article exhibiting an excellent gas barrier capability, excellent transparency, and excellent bending resistance, a method for producing the formed article, and an electronic device member, or the like, comprising the formed article are provided.
Abstract:
Provided is a formed article including a layer obtained by implanting ions of a hydrocarbon compound into a polysilazane compound-containing layer. Also provided are a method for producing the formed article, an electronic device member including the formed article, and an electronic device including the electronic device member. The formed article exhibiting an excellent gas barrier capability and excellent bending resistance, a method for producing the formed article, and an electronic device member, or the like, comprising the formed article are provided.
Abstract:
This gas barrier laminate is comprised such that a base, a gas barrier layer and a protective layer are laminated directly or via another layer in this order, wherein a content rate of oxygen atoms is 20 to 70%, a content rate of nitrogen atoms is 0 to 30% and a content rate of silicon atoms is 25 to 50% relative to the total content of oxygen atoms, nitrogen atoms and silicon atoms in a surface layer part on a protective layer side of the gas barrier layer, and a Young's modulus at 25°C of the protective layer is not less than 5 × 10 9 Pa and not more than 1 × 10 12 Pa. According to the present invention, there are provided: a gas barrier laminate having an excellent gas barrier property, the excellent gas barrier property not being reduced over a long period of time even when it is stuck to a device having a step; a member for an electronic device composed of the gas barrier laminate; and an electronic device comprising the member for electronic device.
Abstract:
The present invention is a gas barrier laminate comprising a base and a gas barrier unit, the gas barrier unit comprising at least two inorganic layers, at least one of the at least two inorganic layers being a silicon oxynitride layer, the silicon oxynitride layer including a composition-gradient region that has a thickness of 25 nm or more, the composition-gradient region being a region in which a content ratio of oxygen decreases and a content ratio of nitrogen increases in a thickness direction toward the base, and a ratio of the thickness of the composition-gradient region to the thickness of the entire silicon oxynitride layer being 0.15 or more. The present invention also relates to: an electronic device member that includes the gas barrier laminate, and an electronic device that includes the electronic device member. The present invention provides: a gas barrier laminate that exhibits a very high gas barrier capability and very high bendability, an electronic device member that includes the gas barrier laminate, and an electronic device that includes the electronic device member.
Abstract:
Provided is a gas barrier film laminate comprising at least two gas barrier films, the gas barrier film laminate having a structure in which two gas barrier films that are situated adjacent to each other are stacked through an adhesive layer, the adhesive layer being formed by curing an adhesive composition layer that is formed using an energy ray-curable adhesive composition by applying energy rays to the adhesive composition layer. Also provided are a method for producing the gas barrier film laminate and an electronic device comprising the gas barrier film laminate. The present invention provides: a gas barrier film laminate that exhibits an excellent moisture barrier capability, and rarely shows a deterioration in external appearance (e.g., due to occurrence of air bubbles) even when allowed to stand at a high temperature and a high humidity for a long time, a method for producing the gas barrier film laminate, and an electronic device that includes the gas barrier film laminate.