Abstract:
Vacuum heat insulator comprising a laminated core made of a plurality of sheets of inorganic fibers having 10 mu m or smaller in diameter and a certain composition including SiO2 as a main component, Al2O3, CaO, and MgO, a gas barrier enveloping member, and an absorbent. The vacuum heat insulator is characterized by having at least one groove formed therein after fabrication of the vacuum heat insulator. Further, the vacuum heat insulator is characterized by using inorganic fiber core of which a peak of distribution in fiber diameter lies between 1 mu m or smaller and 0.1 mu m or larger, and not containing binding material for binding the fiber material. Electronic apparatuses of the present invention use the vacuum heat insulator. With use of the vacuum heat insulator, electronic and electric apparatuses superior in energy saving and not to present uncomfortable feeling to the user can be provided.
Abstract:
By using vacuum heat insulator comprising a core made of laminated sheets of an inorganic fiber having a particular shape and composition as a vacuum heat insulator for a heat insulation box, a heat insulation box excellent in long-term heat insulating property and productivity can be provided. The vacuum heat insulator can be shaped easily. Therefore, a vacuum heat insulator suitable for a required heat insulation portion can be produced easily and applied to a heat insulation box. This property can increase coverage of the vacuum heat insulator on the heat insulation box, thus improving the heat insulating property of the heat insulation box. This can improve the heat insulating property and productivity of a refrigerator, thermal storage box, cold storage box, or vending machine, and contribute to an energy saving.
Abstract:
Vacuum heat insulator comprising a laminated core made of a plurality of sheets of inorganic fibers having 10 µm or smaller in diameter and a certain composition including SiO 2 as a main component, Al 2 O 3 , CaO, and MgO, a gas barrier enveloping member, and an absorbent. The vacuum heat insulator is characterized by having at least one groove formed therein after fabrication of the vacuum heat insulator. Further, the vacuum heat insulator is characterized by using inorganic fiber core of which a peak of distribution in fiber diameter lies between 1 µm or smaller and 0.1 µm or larger, and not containing binding material for binding the fiber material. Electronic apparatuses of the present invention use the vacuum heat insulator. With use of the vacuum heat insulator, electronic and electric apparatuses superior in energy saving and not to present uncomfortable feeling to the user can be provided.
Abstract:
The use of a vacuum heat insulation material using a core material formed by laminating inorganic fiber sheets of particular shape and composition provides a heat insulation box which is superior in time-varying heat insulation performance and in productivity. A vacuum heat insulation material which is easy to pattern; therefore, a vacuum heat insulation material which is suitable for portions requiring heat insulation can be easily prepared and applied to a heat insulation box. This property improves the covering ratio of the vacuum heat insulation material to the heat insulation box and also improves the heat insulation performance of the heat insulation box. For this reason, it is possible to improve the heat insulation property of refrigerators, heat insulation appliances, cold insulation appliances, vending machines, etc. and to improve productivity, and contributes to energy saving.
Abstract:
A vacuum heat insulator according to the present invention includes a core molded to be plate-shaped with the use of a binding agent. The vacuum heat insulator assumes any one of the following configurations. A) The core is formed by curing a fiber aggregate by means of a binding agent. The fibers have an average fiber diameter of at least 0.1 µm but at most 10 µm, and voids defined by fibers have a void diameter of at most 40 µm. The core has a percentage of the voids of at least 80 %. B) The binding agent is varied in concentration in a through-thickness direction of the core. C) A cured layer solidified by the binding agent is formed on at least one side surface of the core. D) The core contains fibers having a length of at most 100 µm. The fibers are oriented perpendicular to a direction of heat transmission. Such vacuum heat insulator is excellent in adiabatic property. Refrigerators, to which such a vacuum heat insulator is applied, are made small in size, or have a large inner volume, or contribute to energy saving.
Abstract:
A portable information device such as a notebook type computer is provided with a highly efficient thermal insulator capable of blocking transfer of heat between an internal heating component and a device enclosure, so as to reduce temperature rise on a surface of the device. The portable information device is also provided with a highly efficient thermal insulator to block transfer of heat between the heating component and an expansion unit mounting case, thereby reducing temperature rise and preventing malfunction of an external expansion unit. The information device includes the thermal insulator to separate between the internal heating component and the device enclosure, another thermal insulator to separate between the heating component and the expansion unit mounting case, and a heat sink. The thermal insulator is a vacuum thermal insulator including inorganic fiber as a core member.
Abstract:
A vacuum thermal insulating material of the present invention and a thermally insulating case using the vacuum thermal insulating material are used as thermal insulation in, for example, refrigerators and freezers. The vacuum thermal insulating material has a core material including two or more different powders and an adsorbent. The vacuum thermal insulating material of the present invention has excellent performance of thermal insulation and is light in weight and manufactured at a low cost. The thermally insulating case of the present invention enables the performance of thermal insulation to be practically maintained over a long time period.
Abstract:
A heat insulating box of a refrigerator includes a inflammable heat-insulator particularly a vacuum heat-insulator made of a board-shape molded inorganic fiber. Therewith inflammability of the heat insulator is ensured and a refrigerator box prevented from catching an outside caused fire is achieved, thus a refrigerator which is safe even when a flammable refrigerant is used and which is high in energy-saving is provided.