Abstract:
A portable information device such as a notebook type computer is provided with a highly efficient thermal insulator capable of blocking transfer of heat between an internal heating component and a device enclosure, so as to reduce temperature rise on a surface of the device. The portable information device is also provided with a highly efficient thermal insulator to block transfer of heat between the heating component and an expansion unit mounting case, thereby reducing temperature rise and preventing malfunction of an external expansion unit. The information device includes the thermal insulator to separate between the internal heating component and the device enclosure, another thermal insulator to separate between the heating component and the expansion unit mounting case, and a heat sink. The thermal insulator is a vacuum thermal insulator including inorganic fiber as a core member.
Abstract:
Vacuum heat insulator comprising a laminated core made of a plurality of sheets of inorganic fibers having 10 mu m or smaller in diameter and a certain composition including SiO2 as a main component, Al2O3, CaO, and MgO, a gas barrier enveloping member, and an absorbent. The vacuum heat insulator is characterized by having at least one groove formed therein after fabrication of the vacuum heat insulator. Further, the vacuum heat insulator is characterized by using inorganic fiber core of which a peak of distribution in fiber diameter lies between 1 mu m or smaller and 0.1 mu m or larger, and not containing binding material for binding the fiber material. Electronic apparatuses of the present invention use the vacuum heat insulator. With use of the vacuum heat insulator, electronic and electric apparatuses superior in energy saving and not to present uncomfortable feeling to the user can be provided.
Abstract:
In order to contribute to the recycling of thermal insulation material containing rigid urethane foam and vacuum insulation material, the present invention has an object of providing a method for recycling thermal insulation material in such a manner that mixed waste materials can have a uniform quality and be reused at high quality, and also providing a recycled article and a refrigerator. In order to achieve the object, in the recycling method according to the present invention, refrigerators containing vacuum insulation material which has glass fiber assembly as the core material and rigid urethane foam are pulverized separately from refrigerators not containing vacuum insulation material, and the waste thermal insulation materials discharged from these types of refrigerators are stored in different recovery towers for waste thermal insulation materials. In an inorganic material content adjusting process, appropriate amounts are fed from the respective recovery towers into a mixer so as to prepare mixed waste materials whose inorganic material content has been adjusted. In the subsequent waste material processing process, the mixed waste materials with an adjusted percentage of inorganic material content are subjected to an appropriate powdering operation, and the resulting powder is sealed into a packaging member under a reduced pressure so as to obtain vacuum insulation material.
Abstract:
Vacuum heat insulator comprising a laminated core made of a plurality of sheets of inorganic fibers having 10 µm or smaller in diameter and a certain composition including SiO 2 as a main component, Al 2 O 3 , CaO, and MgO, a gas barrier enveloping member, and an absorbent. The vacuum heat insulator is characterized by having at least one groove formed therein after fabrication of the vacuum heat insulator. Further, the vacuum heat insulator is characterized by using inorganic fiber core of which a peak of distribution in fiber diameter lies between 1 µm or smaller and 0.1 µm or larger, and not containing binding material for binding the fiber material. Electronic apparatuses of the present invention use the vacuum heat insulator. With use of the vacuum heat insulator, electronic and electric apparatuses superior in energy saving and not to present uncomfortable feeling to the user can be provided.
Abstract:
The thermal insulating foamed material 4 comprises a foamed polyurethane resin composition having closed cells filled with a volatile blowing agent, and having an alkali metal carbonate 7 or an alkaline-earth metal carbonate 7, formed by a reaction of an alkali metal hydroxide or an alkaline-earth metal hydroxide with carbon dioxide, and a water adsorbent 10 having a moistened water-absorbing substance 8 covered with a resinous coating film 9, enclosed in said thermal insulating foamed material 4, respectively.