Abstract:
An apparatus includes an electrical power source and a solid-state circuit located within a housing. The circuit is coupled to the electrical power source such that circuit is initially in an inactive state in which electrical current is prevented from flowing through the solid-state circuit, the inactive state corresponding to an OFF mode of the apparatus. The circuit further includes an active state in which electrical current is allowed to flow through the solid-state circuit, thereby turning the apparatus in an ON mode, the active state being triggered by a momentary voltage and remaining active after the momentary voltage is removed.
Abstract:
A mobile device includes one or more electronic circuits that control the operation of the device. The electronic circuit can be connected to a power source by a switch that can be maintained in the open position when the device is being shipped and stored prior to use. The act of taking the mobile device out of the package can include manipulating the mobile device to cause the switch to close connecting the electronic circuit to the power source to begin operation. In accordance with some embodiments, the switch can include a magnetic switch that is maintained in the open position by a magnetic component in the packaging and becomes closed when the mobile device is removed from the packaging. In accordance with some embodiments, the switch can be maintained in the open position by a packaging insert and becomes closed when the package is opened removing the insert.
Abstract:
An ultra-thin wearable sensing device includes a sensor tag IC that enables the device to communicate wirelessly to a reading device. The wearable sensing device includes one or more sensors connected to the sensor tag IC that sense characteristics of the person, animal or object that the sensing device comes in contact with. The sensed characteristics can include biological signals (e.g., ECG, EMG, and EEG), temperature, galvanic skin response (GSR), heat flux and chemicals or fluids released by the skin. The reading device can display the information to the user and/or transmit the sensor data to a remote location for further processing. A doctor can review the data or have the data further analyzed and use this data or information to assist with treatment.
Abstract:
The present invention relates to portable devices for point-of-care diagnostics that can perform measurements on a sample (e.g., blood, serum, saliva, or urine) and relay data to an external device for, e.g., data analysis. The device can comprise a paper-based diagnostic substrate and a base substrate that include electronic circuitry and electronic elements necessary for performing the measurements. The device can also comprise an antenna for near field communication with an external device. Another aspect of the invention relates to methods of using these devices.
Abstract:
Devices and methods are provided for performing procedure on tissue with flow monitoring using flow sensors. The devices include an elongated member, and at least one flow sensor disposed on the elongated member. The flow sensor includes at least one temperature sensor and at least one heating element having a cavity. At least a portion of the at least one temperature sensor is housed in the cavity. A temperature measurement of the temperature sensor provides an indication of the flow rate of a fluid proximate to the flow sensor.
Abstract:
Devices and methods are provided for performing an ablation procedure on tissue with flow monitoring using flow sensors. The devices include a catheter, and at least one flow sensor disposed on the catheter, and a component for applying the ablation procedure. An assessment module provides an indication of the efficacy of the abaltion procedure based on the flow measurement from the flow sensor.
Abstract:
A wearable device includes a flexible printed circuit board and one or more conductive stiffeners. The conductive stiffeners include a conductive surface that can be electrically or thermally connected to contact pads on the flexible printed circuit board. The wearable device can further include an adhesive layer or an encapsulation layer. The adhesive layer and the encapsulation layer can include conductive portions surrounded by non-conductive portions. The conductive portions can be aligned with the conductive stiffeners and together transmit electrical and/or thermal energy to the contact pads of the flexible printed circuit board.
Abstract:
A device includes a wirelessly enabled energy harvesting device, an energy storage component, a DC-DC converter, and a functional circuit. The energy storage component is electrically coupled to the wirelessly enabled energy harvesting device for storing energy harvested by the wirelessly enabled energy harvesting device from a wireless transmitting device positioned adjacent to the device. The DC-DC converter is electrically coupled to the energy storage component for receiving a voltage output from the energy storage component and converting the received voltage output to a second voltage level to provide power to one or more components of the device. The functional circuit is for measuring a concentration of a substance in a fluid sample. The functional circuit is coupled to the DC-DC converter such that the functional circuit obtains at least a portion of the power provided by the DC-DC converter.
Abstract:
Devices and methods are provided for performing procedure on tissue with flow monitoring using flow sensors. The devices include an elongated member, and at least one flow sensor disposed on the elongated member. The flow sensor includes at least one temperature sensor and at least one heating element having a cavity. At least a portion of the at least one temperature sensor is housed in the cavity. A temperature measurement of the temperature sensor provides an indication of the flow rate of a fluid proximate to the flow sensor.
Abstract:
Devices and methods are provided for performing an ablation procedure on tissue with flow monitoring using flow sensors. The devices include a catheter, and at least one flow sensor disposed on the catheter, and a component for applying the ablation procedure. An assessment module provides an indication of the efficacy of the ablation procedure based on the flow measurement from the flow sensor.