Abstract:
A pressure sensor system may sense the pressure of a gas or liquid. The system may include a housing that has an entry port for the gas or liquid; a pressure sensor within the housing; and a baffle positioned between the entry port and the pressure sensor. The baffle may have one or more inlets oriented to receive gas or liquid that enters the entry port; one or more outlets oriented to deliver the received gas or liquid to the pressure sensor; and one or more sealed flow channels that prevent the gas or liquid from escaping from the baffle, other than through the one or more outlets. At least one of the outlets may be located within no more than one millimeter of a location on the pressure sensor. The pressure sensor and baffle may be made at the same time during a process of depositing, pattering, etching, wafer bonding, and/or wafer thinning a series of layers using microelectromechanical systems (MEMS) technology.
Abstract:
Micro-Pirani gauge vacuum gauges are described that use low-thermal conductivity support elements. A micro-Pirani gauge or vacuum sensor can include a heating element operative to heat a gas and to produce a signal corresponding to the pressure of the gas; a platform configured to receive the heating element, with the platform having a first coefficient of thermal conductivity; and a support element connected to a substrate and configured to support the platform with the heating element within an aperture disposed in the substrate, with the support element having a second coefficient of thermal conductivity, where the second coefficient of thermal conductivity is less than the first coefficient of thermal conductivity. Multimode pressure sensing including a micro-Pirani gauge are also described.
Abstract:
Stress relief structures and methods that can be applied to MEMS sensors requiring a hermetic seal and that can be simply manufactured are disclosed. The system includes a sensor having a first surface and a second surface, the second surface being disposed away from the first surface, the second surface also being disposed away from a package surface and located between the first surface and the package surface, a number of support members, each support member extending from the second surface to the package surface, the support members being disposed on and operatively connected to only a portion of the second surface. The support member are configured to reduce stress produced by package-sensor interaction.
Abstract:
A pressure sensor system may sense the pressure of a gas or liquid. The system may include a housing that has an entry port for the gas or liquid; a pressure sensor within the housing; and a baffle positioned between the entry port and the pressure sensor. The baffle may have one or more inlets oriented to receive gas or liquid that enters the entry port; one or more outlets oriented to deliver the received gas or liquid to the pressure sensor; and one or more sealed flow channels that prevent the gas or liquid from escaping from the baffle, other than through the one or more outlets. At least one of the outlets may be located within no more than one millimeter of a location on the pressure sensor. The pressure sensor and baffle may be made at the same time during a process of depositing, pattering, etching, wafer bonding, and/or wafer thinning a series of layers using microelectromechanical systems (MEMS) technology.
Abstract:
A pressure sensor system may sense the pressure of a gas or liquid. The system may include a housing that has an entry port for the gas or liquid; a pressure sensor within the housing; and a baffle positioned between the entry port and the pressure sensor. The baffle may have one or more inlets oriented to receive gas or liquid that enters the entry port; one or more outlets oriented to deliver the received gas or liquid to the pressure sensor; and one or more sealed flow channels that prevent the gas or liquid from escaping from the baffle, other than through the one or more outlets. At least one of the outlets may be located within no more than one millimeter of a location on the pressure sensor. The pressure sensor and baffle may be made at the same time during a process of depositing, pattering, etching, wafer bonding, and/or wafer thinning a series of layers using microelectromechanical systems (MEMS) technology.
Abstract:
Micro-Pirani gauge vacuum gauges are described that use low-thermal conductivity support elements. A micro-Pirani gauge or vacuum sensor can include a heating element operative to heat a gas and to produce a signal corresponding to the pressure of the gas; a platform configured to receive the heating element, with the platform having a first coefficient of thermal conductivity; and a support element connected to a substrate and configured to support the platform with the heating element within an aperture disposed in the substrate, with the support element having a second coefficient of thermal conductivity, where the second coefficient of thermal conductivity is less than the first coefficient of thermal conductivity. Multimode pressure sensing including a micro-Pirani gauge are also described.
Abstract:
STRESS RELIEF MEMS STRUCTURE AND PACKAGE Stress relief structures and methods that can be applied to MEMS sensors requiring a hermetic seal and that can be simply manufactured are disclosed. The system includes a sensor 5 having a first surface and a second surface, the second surface being disposed away from the first surface, the second surface also being disposed away from a package surface and located between the first surface and the package surface, a number of support members, each support member extending from the second surface to the package surface, the support members being disposed on and operatively connected to only a portion of the second surface. The support 10 member are configured to reduce stress produced by package-sensor interaction. FIG. 1 FIG.2