Abstract:
In a wireless communication system, a chip time is selected in a complex pseudonoise (PN) sequence generator (130, 132). For a next chip time followi ng the selected chip time, a phase difference between a previous complex PN chi p and a next complex PN chip is restricted to a preselected phase angle (204). In one embodiment, every other chip time is selected and the preselected ang le is 90 degrees (216, 218).
Abstract:
A method and apparatus for long code generation in synchronous, multi-chip rate systems (200), wherein a first code sequence having a first bit rate (205), and a second code sequence having the first bit rate (215, 225), the second code sequence being a time delay (210, 212) of the first code sequenc e, are multiplexed together (208), producing a desired long code (216).
Abstract:
A peak-reducing waveform is estimated and summed with a composite signal to reduce the peak-to-average power ratio of the composite signal. The estimate of the peak-reducing waveform is modified to have Walsh code components orthogonal to the assigned Walsh codes. An iterative process of estimating subsequent peak-reducing waveform is implemented to produce a peak-reducing waveform which, when summed with the composite signal, results in a composite signal having a peak-to-average ratio at a desired level and thus does not have the effects of remodulating the assigned Walsh codes. Constraints on the magnitude of the unassigned Walsh code components can be included for controlling the power level under the unassigned Walsh codes.
Abstract:
A method and apparatus for mitigating error in a received communications signal includes an error mitigator (35) of a communication unit (12) which receives and performs mitigation based on an error indication. In a first embodiment the error indication is a phase or non-used data symbol indicating error in ADPCM data, and mitigation includes changing certain nibble values to different predetermined values. In a second embodiment the error indication may include other parameters, e.g., a CRC frame error indicator, and an error estimator (34) determines a level of corruption in the ADPCM data. The error mitigator (35) applies a predetermined set of replacement values based on the indicated level of corruption and the mitigated data is subsequently decoded in an ADPCM decoder (26).
Abstract:
A method and apparatus for mitigating error in a received communications signal includes an error mitigator (35) of a communication unit (12) which receives and performs mitigation based on an error indication. In a first embodiment the error indication is a phase or non-used data symbol indicating error in ADPCM data, and mitigation includes changing certain nibble values to different predetermined values. In a second embodiment the error indication may include other parameters, e.g., a CRC frame error indicator, and an error estimator (34) determines a level of corruption in the ADPCM data. The error mitigator (35) applies a predetermined set of replacement values based on the indicated level of corruption and the mitigated data is subsequently decoded in an ADPCM decoder (26).
Abstract:
An apparatus and method of reducing a peak envelope power of a linear power amplifier (10) amplifying a plurality of channels is provided. The method includes the steps of measuring (104) the peak envelope power of the linear power amplifier, measuring a channel activity level (101) of each channel of the plurality of channels, and, when the peak envelope power exceeds a first threshold, changing (103, 106) at least one parameter of a channel of the plurality of channels having a channel activity level exceeding a second threshold to reduce the peak envelope power.
Abstract:
An apparatus and method of reducing a peak envelope power of a linear power amplifier (10) amplifying a plurality of channels is provided. The method includes the steps of measuring (104) the peak envelope power of the linear power amplifier, measuring a channel activity level (101) of each channel of the plurality of channels, and, when the peak envelope power exceeds a first threshold, changing (103, 106) at least one parameter of a channel of the plurality of channels having a channel activity level exceeding a second threshold to reduce the peak envelope power.
Abstract:
A digital receiver (200) and a transmitter (300), wherein the digital receiver includes a plurality of antennas (202) for receiving uplink radio frequency signals; a plurality of analog to digital converters (210) for converting the received radio frequency signals into digital signals; a switched digital down converter (214) for down converting one of the digital signals to a baseband IF signal; and a channel processor (228) for recovering one of a plurality of communication channels contained within the baseband IF signal.
Abstract:
In a digital preprocessing system for processing a digital signal for analog transmission, the digital signal is up-sampled to produce a digital up-sampled signal having signal components in a plurality of Nyquist bands including a first Nyquist band and a plurality of super-Nyquist bands at higher frequencies than the first Nyquist band, wherein the first Nyquist band includes a baseband signal component and a plurality of aliased signal components. Thereafter, one of the plurality of signal components in the first Nyquist band is selected from the digital up-sampled signal. Finally, the selected one of the plurality of signal components is output at a frequency that will cause a digital to analog converter to output an aliased signal component in a super-Nyquist band nearer an anticipated peak amplitude of a filtering characteristic of the digital to analog converter than an aliased signal component in the super-Nyquist band that would be output by the digital to analog converter processing the baseband signal component.