Abstract:
A system and method for reducing a transient response in a phase lock loop (PLL) (100) is disclosed. The system includes an adapt mode charge pump (204), a normal mode charge pump (206) and the use of controlled trickle currents (208), (210) applied to those charge pumps to minimize a transient response of the PLL (100).
Abstract:
An amplifier (102) which can be dynamically biased is disclosed. A controller (118) determines when to change the bias to the amplifier (102), in order to achieve low frequency splatter. This is accomplished by changing the bias level of amplifier (102) between a substantially linear (class A) mode of operation, and a substantially nonlinear (class B) mode of operation. During the critical periods when the amplifier (102) is being turned into and out of operation, the amplifier (102) is placed in a substantially linear mode of operation, thereby reducing the output harmonics which develop. In another aspect of the invention a radio (300) which employs a dynamically biased amplifier (102) is disclosed.
Abstract:
A system and method for reducing a transient response in a phase lock loop (PLL) (100) is disclosed. The system includes an adapt mode charge pump (204), a normal mode charge pump (206) and the use of controlled trickle currents (208), (210) applied to those charge pumps to minimize a transient response of the PLL (100).
Abstract:
An amplifier (102) which can be dynamically biased is disclosed. A controller (118) determines when to change the bias to the amplifier (102), in order to achieve low frequency splatter. This is accomplished by changing the bias level of amplifier (102) between a substantially linear (class A) mode of operation, and a substantially nonlinear (class B) mode of operation. During the critical periods when the amplifier (102) is being turned into and out of operation, the amplifier (102) is placed in a substantially linear mode of operation, thereby reducing the output harmonics which develop. In another aspect of the invention a radio 300 which employs a dynamically biased amplifier (102) is disclosed.
Abstract:
An amplifier (102) which can be dynamically biased is disclosed. A controller (118) determines when to change the bias to the amplifier (102), in order to achieve low frequency splatter. This is accomplished by changing the bias level of amplifier (102) between a substantially linear (class A) mode of operation, and a substantially nonlinear (class B) mode of operation. During the critical periods when the amplifier (102) is being turned into and out of operation, the amplifier (102) is placed in a substantially linear mode of operation, thereby reducing the output harmonics which develop. In another aspect of the invention a radio 300 which employs a dynamically biased amplifier (102) is disclosed.
Abstract:
A system and method for reducing the transient responses in a phase lock loop (PLL) (100) with variable oscillator gain is disclosed. The system includes a charge pump (104) having an adapt mode and a normal mode of operation. The charge pump (104) also includes controlled trickle currents from current sources (208), (210) which are applied to the output (105), (107) of charge pump (104) to minimize the transient responses of the PLL (100). A programmable delay is provided in the charge pump (104) and is configured using a controller (122) based on the variable oscillator gain for the PLL (100). The configured programmable delay is used in the adapt mode of operation for adding a trickle current from the current source (210) to the adapt mode output (107).
Abstract:
A system and method for reducing the transient responses in a phase lock loop (PLL) (100) with variable oscillator gain is disclosed. The system includes a charge pump (104) having an adapt mode and a normal mode of operation. The charge pump (104) also includes controlled trickle currents from current sources (208), (210) which are applied to the output (105), (107) of charge pump (104) to minimize the transient responses of the PLL (100). A programmable delay is provided in the charge pump (104) and is configured using a controller (122) based on the variable oscillator gain for the PLL (100). The configured programmable delay is used in the adapt mode of operation for adding a trickle current from the current source (210) to the adapt mode output (107).
Abstract:
An amplifier (102) which can be dynamically biased is disclosed. A controller (118) determines when to change the bias to the amplifier (102), in order to achieve low frequency splatter. This is accomplished by changing the bias level of amplifier (102) between a substantially linear (class A) mode of operation, and a substantially nonlinear (class B) mode of operation. During the critical periods when the amplifier (102) is being turned into and out of operation, the amplifier (102) is placed in a substantially linear mode of operation, thereby reducing the output harmonics which develop. In another aspect of the invention a radio 300 which employs a dynamically biased amplifier (102) is disclosed.
Abstract:
Un subsistema receptor de radiofrecuencia, RF, sigma-delta integrado (200) que comprende: un convertidor analógico-digital sigma-delta multi-modo (215) para proporcionar una salida sencilla y multi-bit; un mezclador digital (221) para la creación de señales banda base digitales en fase (I) y en fase de cuadratura (Q); una red de decimación programable (221) para reducir la frecuencia de las señales banda base digitales en fase y en cuadratura; y una red de formateo programable (223) para organizar las componentes en fase y en cuadratura de la red de decimación (221) para el procesamiento de señal posterior, caracterizado porque dicha red de formateo programable (223) comprende un medio para producir una primera palabra de 16 bits de la señal en fase, y una segunda palabra de 16 bits de la señal en cuadratura y una tercera palabra de 16 bits para su uso como una información de control automático de ganancia, comprendiendo dicha red de formateo programable (223) además una interfaz serie síncrona para insertar información síncrona para determinar las porciones de comienzo y parada para cada una de dichas palabras para su uso posterior en el procesamiento de la señal.
Abstract:
An integrated sigma-delta radio frequency (RF) receiver subsystem (200) and method utilizes a multi-mode sigma-delta analog-to-digital converter (215) for providing a single and multi-bit output. A programmable decimation network (221) for reducing the frequency of the in-phase and quadrature bit stream and a programmable formatting network (223) are also used for organizing the in-phase and quadrature components from the decimation network (221) for subsequent signal processing. The invention offers a highly integrated digital/analog RF receiver back-end which incorporates integrated filtering and a smart gain control that is compatible for use with other receiver systems and offering superior performance characteristics.