Abstract:
A method and an apparatus align and attach a leadless surface mount component (402) including a termination at each end of the component (402). The termination has bottom (704) and end (702) portions for attaching to a corresponding pad on a substrate (102) by a reflow solder process (1200). A pad arrangement (100) is formed including two opposite pads (108), each pad (108) occupying a tri-oval-shaped area. The tri-oval-shaped area includes an elliptical area (110) substantially centered un der the bottom portion (704) of the corresponding termination of the component (402) when the component (402) is aligned with the pad arrangement (100), and an arcuate area (112) contiguous with the elliptical area (110) and extending towards the opposite pad (108) in a central lengthwise direction. A solder paste (202) is applied to the elliptical area (110), and thereafter reflowed, whereby solder (302) in the solder paste (202) liquefies and flows onto the arcuate area (112), thereby facilitating alignment of the component (402) with the pad arrangement (100).
Abstract:
A mounting pad arrangement (FIG. 5) improves reliability of placement of a surface mount component. A first pad array is disposed throughout an area on the surface (308) of a substrate (202), the area having four outside corners. The first pad array includes contact pads (502) arranged in a first linear grid pattern, and eight aligning pads (504,506,510,514,518), larger than the contact pads (502). Two aligning pads (504,506,510,514,518) are near each of the four outside corners. Each aligning pad (504,506,510,514,518) is positioned off center with respect to the first linear grid pattern such that a tangential line (608,610,612,614) can be drawn between an innermost point of the aligning pad (504,506,510,514,518) and corresponding innermost points of the contact pads (502) that are collinear on the first linear grid pattern. A second pad array (406) is disposed on the surface mount component and arranged in a second linear grid pattern that aligns with the first linear grid pattern. Eight pads of the second pad array (406) also align with points of intersection of the first linear grid pattern that fall within each of the eight aligning pads (504,506,510,514,518). Each pad of the second pad array (406) is equal in size to any other pad of the second pad array (406). Solder (312) is disposed between and contacting each pad of the first and second pad arrays.
Abstract:
A surface mount component placement arrangement includes a circuit supporting substrate (202) having a first surface (308), and disposed thereon are a first pad array (502) and a first at least one aligning pad (506). A component (802) has a second surface (801), the second surface (801) substantially opposing the first surface (308), and disposed on the second surface (801) are second pad array (406) and a second at least one aligning pad (508). The first and second pad arrays (406, 502) at least partially overlap with each other. The aligning pads (506, 508) at least partially overlap with each other relative to a second tolerance of the placement operation. The partially overlapping pair of pads (506, 508) are oriented relative to each other such that when solder therebetween is liquid the surface tension of the solder can move the component (802) relative to the circuit supporting substrate.
Abstract:
A surface mount component placement arrangement includes a circuit supporting substrate (202) having a first surface (308), and disposed thereon are a first pad array (502) and a first at least one aligning pad (506). A component (802) has a second surface (801), the second surface (801) substantially opposing the first surface (308), and disposed on the second surface (801) are second pad array (406) and a second at least one aligning pad (508). The first and second pad arrays (406, 502) at least partially overlap with each other. The aligning pads (506, 508) at least partially overlap with each other relative to a second tolerance of the placement operation. The partially overlapping pair of pads (506, 508) are oriented relative to each other such that when solder therebetween is liquid the surface tension of the solder can move the component (802) relative to the circuit supporting substrate.