Abstract:
A programmable correlator for a communication system includes an input queue coupled with an analog-to-digital converter (ADC). The input queue includes a random access memory (RAM) wherein sampled data streams from the ADC are written into the RAM. The input queue has two banks of memory of width 2M. A flexible complex correlator is operable on M samples. The correlator is coupled to read M complex samples out of 2M samples from the input queue. A pseudo-noise (PN) crossbar unit operates to rotate a generated PN code to match a rotation of the input queue data in the complex correlator.
Abstract:
The invention provides a method for generating a code sequence. A code-generation instruction is received from memory. One or more control signals are determined based on the code-generation instruction. A code sequence is generated based on the control signals, a current state input, and a mask input.
Abstract:
A method and system for generating a double-sided pulse width modulation (PWM) signal (110) is disclosed. The method includes generating a leading edge PWM signal and a trailing edge PWM signal from a pulse code modulation (PCM) data stream (102) using a modulation conversion circuitry (106). The method further includes combining the leading edge PWM signal and the trailing edge PWM signal to form a double-sided PWM signal using a combining circuitry (108).
Abstract:
A method, wireless controller, and information processing system are provided to dynamically allocate spectrum sensing resources. A first input (804) including available sensing session time for performing spectrum sensing with respect to one or more primary systems (102) is received. A second input (806) including a set of communication channels to be monitored in the spectrum sensing session is received. A third input (808) including detection constraints associated with a plurality of available sensing nodes (114) in a secondary network (104) for performing the spectrum sensing is received. Spectrum sensing resources are dynamically allocated (814) among a set of the plurality of available sensing nodes (114) based on the first (804), second (806), and third inputs (808).