Abstract:
An integrable circuit inductor (220) is formed from a patterned conductive material (110) that has a major portion completely encapsulated by a material (221, 223) that is substantially electrically non-conductive, and that has a magnetic response at the operating frequency of the inductor (220). Preferably, an amorphous ferrite material is used for encapsulation, which provides a closed magnetic flux path for the inductor (220) when processing a signal at its operating frequency.
Abstract:
A voltage variable capacitor (10) has as the base substrate a silicon wafer with a layer of high resistivity semiconductor material on top of the substrate. An insulating layer (16) of a metal oxide having a dielectric constant greater than the dielectric constant of the semiconductors (12), such as zirconium titanate, is formed on top of the high resistivity layer, and a metal electrode (18) is formed on the insulating layer (16). When the electrode is energized, a depletion layer (20) is formed in the high resistivity layer. By varying the voltage applied to the electrode, the capacitance of the device is altered.
Abstract:
An epitaxial layer of crystalline piezoelectric material such as lithium niobate and lithium tantalate can be grown overlying a silicon wafer by first growing an intermediate strain-relief layer on the silicon wafer. Early in the growth of the piezoelectric layer, the strain-relief layer is a crystalline metal oxide, which helps bridge the lattice mismatch between silicon and the piezoelectric material. After growth of a thin crystalline piezoelectric layer, the strain-relief layer is amorphized to decouple the silicon and piezoelectric crystal lattices. Growth of the piezoelectric layer may then be resumed to obtain a good quality thicker layer suitable for electro-acoustic device fabrication. Passive and active electro-acoustic devices may be fabricated using the epitaxial piezoelectric layer. In particular, acoustic charge transport devices that utilize device elements in both silicon and the piezoelectric epitaxial overlayer are designed and fabricated. The electro-acoustic devices may be integrated with semiconductor device circuitry fabricated on the silicon wafer.
Abstract:
A first type of MEMS resonator adapted to be fabricated on a SOI wafer is provided. A second type of MEMS resonator that is fabricated using deep trench etching and occupies a small area of a semiconductor chip is taught. Overtone versions of the resonators that provide for differential input and output signal coupling are described. In particular resonators suited for differential coupling that are physically symmetric as judged from center points, and support anti-symmetric vibration modes are provided. Such resonators are robust against signal noise caused by jarring. The MEMS resonators taught by the present invention are suitable for replacing crystal oscillators, and allowing oscillators to be integrated on a semiconductor chip. An oscillator using the MEMS resonator is also provided.
Abstract:
A voltage variable capacitor (10) has as the base substrate a silicon wafer with a layer of high resistivity semiconductor material on top of the substrate. An insulating layer (16) of a metal oxide having a dielectric constant greater than the dielectric constant of the semiconductors (12), such as zirconium titanate, is formed on top of the high resistivity layer, and a metal electrode (18) is formed on the insulating layer (16). When the electrode is energized, a depletion layer (20) is formed in the high resistivity layer. By varying the voltage applied to the electrode, the capacitance of the device is altered.
Abstract:
An epitaxial layer of crystalline piezoelectric material such as lithium niobate and lithium tantalate can be grown overlying a silicon wafer by first growing an intermediate strain-relief layer on the silicon wafer. Early in the growth of the piezoelectric layer, the strain-relief layer is a crystalline metal oxide, which helps bridge the lattice mismatch between silicon and the piezoelectric material. After growth of a thin crystalline piezoelectric layer, the strain-relief layer is amorphized to decouple the silicon and piezoelectric crystal lattices. Growth of the piezoelectric layer may then be resumed to obtain a good quality thicker layer suitable for electro-acoustic device fabrication. Passive and active electro-acoustic devices may be fabricated using the epitaxial piezoelectric layer. In particular, acoustic charge transport devices that utilize device elements in both silicon and the piezoelectric epitaxial overlayer are designed and fabricated. The electro-acoustic devices may be integrated with semiconductor device circuitry fabricated on the silicon wafer.
Abstract:
A semiconductor device (10), comprising a semiconductor substrate (12) having a layer of semiconductor material (14) deposited, coated or grown epitaxially as a single crystal or polysilicon on the surface of the substrate. The layer of material is also a semiconductor material, having a higher resistivity than the substrate it is deposited on. A dielectric layer (16) of a metal oxide is formed on the high resistivity layer (14), which is then covered with an amorphous layer (18) of a metal oxide dielectric. Zirconium titanate may be used as a metal oxide dielectric layer. A metal electrode (20) is formed on the amorphous layer (18) to form a Metal Insulator Semiconductor device. In an alternative configuration, the amorphous layer (18) may instead be placed between the high resistivity layer (14) and the dielectric layer (16), or a second amorphous layer (22) may be added between the high resistivity layer and the dielectric layer. When the device is electrically energized, a depletion region is formed in the high resistivity layer, creating a voltage variable capacitor.
Abstract:
Un condensateur à capacité variable (10) comprend, comme substrat de base, une tranche de silicium sur laquelle est appliquée une couche d'un matériau semi-conducteur à résistivité élevée. Une couche isolante (16) composée d'un oxyde métallique présentant une constante diélectrique supérieure à celle des semi-conducteurs (12), tel que le titanate de zirconium, est formée au-dessus de la couche à résistivité élevée, et une électrode métallique (18) est appliquée sur la couche isolante (16). Lorsque l'électrode est excitée, une zone de déplétion (20) est produite dans la couche à résistivité élevée. On modifie la capacitance du dispositif en variant la tension appliquée à l'électrode.
Abstract:
Dispositif à semiconducteur (10) comprenant un substrat à semiconducteur (12) sur lequel une couche de matière semiconductrice (14) est déposée, appliquée sous forme de revêtement ou développée épitaxialement sous la forme d'un monocristal ou de polysilicium sur la surface du substrat. La couche de matière est également un matériau semiconducteur ayant une résistivité plus élevée que le substrat sur lequel il est déposé. Une couche diélectrique (16) d'un oxyde métallique est formée sur la couche de haute résistivité (14) qui est ensuite recouverte d'une couche amorphe (18) d'un diélectrique d'oxyde métallique. Du titanate de zirconium peut être utilisé comme couche diélectrique d'oxyde métallique. Une électrode métallique (20) est formée sur la couche amorphe (18) afin d'obtenir un dispositif semiconducteur isolateur métallique. Dans une variante, la couche amorphe (18) peut être placée entre la couche de haute résistivité (14) et la couche diélectrique (16), ou bien une seconde couche amorphe (22) peut être ajoutée entre la couche de haute résistivité et la couche diélectrique. Lorsque le dispositif est excité électriquement, une région d'appauvrissement se forme dans la couche de haute résistivité, créant ainsi un condensateur à tension variable.