Abstract:
Laser based processes are used alone or in combination to effectively process doped domains for semiconductors and/or current harvesting structures. For example, dopants can be driven into a silicon/germanium semiconductor layer from a bare silicon/ germanium surface using a laser beam. Deep contacts have been found to be effective for producing efficient solar cells. Dielectric layers can be effectively patterned to provide for selected contact between the current collectors and the doped domains along the semiconductor surface. Rapid processing approaches are suitable for efficient production processes.
Abstract:
Layer transfer approaches are described to take advantage of large area, thin inorganic foils formed onto a porous release layer. In particular, since the inorganic foils can be formed from ceramics and/or crystalline materials that do not bend a large amount, approaches are described to provide for gradual pulling along an edge to separate the foil from a holding surface along a curved surface designed to not excessively bend the foil such that the foil is not substantially damaged in the transfer process. Apparatuses are described to perform the transfer with a rocking motion or with a rotating cylindrical surface. Furthermore, stabilization of porous release layers can improve the qualities of resulting inorganic foils formed on the release layer. In particular, flame treatments can provide improved release layer properties, and the deposition of an interpenetrating stabilization composition can be deposited using CVD to stabilize a porous layer.
Abstract:
Layered metal structures are patterned to form a surface with some locations having an alloy along the top surface at some locations and the original top metal layer at other locations along the surface. The alloy and original top metal layer can be selected to have differential etching properties such that the pattern of the alloy or original metal can be selectively etched to form a patterned metal interconnect. In general, the patterning is performed by localized heating that drives formation of the alloy at the heated locations. The metal patterning can be useful for solar cell applications as well as for electronics applications, such as display applications.
Abstract:
ZMR apparatuses provide for controlled temperature flow through the system to reduce energy consumption while providing for desired crystal growth properties. The apparatus can include a cooling system to specifically remove a desired amount of heat from a melted film to facilitate crystallization. Furthermore, the apparatus can have heated walls to create a background temperature within the chamber that reduces energy use through the reduction or elimination of cooling for the chamber walls. The apparatuses and corresponding methods can be used with inorganic films directly or indirectly associated with a porous release layer that provides thermal insulation with respect to an underlying substrate. If the recrystallized film is removed from the substrate, the substrates can be reused. The methods can be used for large area silicon films with thicknesses from 2 microns to 100 microns, which are suitable for photovoltaic applications as well as electronics applications.
Abstract:
Sub-atmospheric pressure chemical vapor deposition is described with a directed reactant flow and a substrate that moves relative to the flow. Thus, using this CVD configuration a relatively high deposition rate can be achieved while obtaining desired levels of coating uniformity. Deposition approaches are described to place one or more inorganic layers onto a release layer, such as a porous, particulate release layer. In some embodiments, the release layer is formed from a dispersion of submicron particles that are coated onto a substrate. The processes described can be effective for the formation of silicon films that can be separated with the use of a release layer into a silicon foil. The silicon foils can be used for the formation of a range of semiconductor based devices, such as display circuits or solar cells.
Abstract:
Thin semiconductor foils can be formed using light reactive deposition. These foils can have an average thickness of less than 100 microns. In some embodiments, the semiconductor foils can have a large surface area, such as greater than about 900 square centimeters. The foil can be free standing or releasably held on one surface. The semiconductor foil can comprise elemental silicon, elemental germanium, silicon carbide, doped forms thereof, alloys thereof or mixtures thereof. The foils can be formed using a release layer that can release the foil after its deposition. The foils can be patterned, cut and processed in other ways for the formation of devices. Suitable devices that can be formed form the foils include, for example, photovoltaic modules and display control circuits.
Abstract:
Highly uniform silicon/germanium nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silicon/germanium particles can be surface modified to form the dispersions. The silicon/germanium nanoparticles can be doped to change the particle properties. The dispersions can be printed as an ink for appropriate applications. The dispersions can be used to form selectively doped deposits of semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.