Abstract:
According to one aspect of the present invention, a multiple electron beam inspection apparatus includes a reference image generation circuit generating reference images corresponding to the secondary electron images, in accordance with an image generation characteristic of a secondary electron image by irradiation of one beam; and a correction circuit generating corrected reference images in which, on the basis of deviation information between a figure pattern of the secondary electron image by irradiation of the one beam of the multiple primary electron beams and a figure pattern of a secondary electron image by irradiation of another beam different from the one beam of the multiple primary electron beams, a shape of a figure pattern of a reference image corresponding to the figure pattern of the secondary electron image by the irradiation of the another beam in the reference images is corrected.
Abstract:
According to one aspect of the present invention, a pattern inspection apparatus includes a uniform sizing processing circuit configured to resize a line width of a design pattern being a basis of the figure pattern by using a uniform sizing amount which has been set in advance; a reference image generation circuit configured to generate a reference image corresponding to the secondary electron image by performing image development on data of the design pattern whose line width has been resized; and a line-width dependent correction circuit configured to correct a line width of a figure pattern in the secondary electron image by using a correction amount which has been set in advance depending on a line width size.
Abstract:
Provided is an inspection apparatus including: an irradiation source irradiating a first pattern formed on an inspection target object with an electron beam; a detection circuit acquiring a first inspection image generated from the first pattern by irradiation; a filter circuit performing smoothing using a local region having a first size in a direction parallel to a first outline included in the first inspection image and a second size smaller than the first size in a direction perpendicular to the first outline and acquiring a second inspection image including a second outline generated by the smoothing; and a comparison circuit comparing the second inspection image with a predetermined reference image.
Abstract:
A first output value evaluation device obtains an average value of output values of optical image data for each of unit regions and creates a distribution map of an average value in an inspected region. A first defect history management device creates a distribution map related with the shape of the pattern from the distribution map of the average value and holds the created distribution map. A second output value evaluation device obtains at least one of a variation value and deviation of the output value of each pixel in the unit region. A defect determination device compares the obtained value with a threshold value. A second defect history management device holds information of the output value determined as a defect in the defect determination device. A defect/defect history analysis device analyzes, and checks the information from the first defect history management device and the second defect history management device.
Abstract:
A multi-electron beam inspection apparatus includes a multi-detector that includes a plurality of detection sensors each of which detects a secondary electron beam emitted due to that a target object is irradiated with a primary electron beam individually preset in multiple secondary electron beams emitted because the target object is irradiated with multiple primary electron beams, a reference image data generation circuit that generates reference image data of a position irradiated with each primary electron beam, based on design data serving as a basis of the pattern formed on the target object, a synthesis circuit that synthesizes, for each primary electron beam, the reference image data of the position irradiated with a primary electron beam concerned and portions of reference image data of positions irradiated with other primary electron beams different from the primary electron beam concerned, and a comparison circuit that compares synthetic reference image data having been synthesized, and secondary electron image data based on a value detected by the detection sensor which detects a secondary electron beam due to irradiation with the primary electron beam concerned.
Abstract:
A pattern inspection apparatus includes an illumination optical system to illuminate an inspection substrate on which a pattern is formed, an offset calculation circuit to calculate an offset amount which depends on an image accumulation time of each of a plurality of photo sensor elements arrayed two-dimensionally, a time delay integration (TDI) sensor to include the plurality of photo sensor elements, to acquire an image of the inspection substrate by receiving a transmitted light or a reflected light from the inspection substrate by the plurality of photo sensor elements, to correct, using the offset amount, a pixel value of optical image data of an acquired image, and to output the optical image data having been corrected, and a comparison circuit to compare an optical image formed by the optical image data output from the TDI sensor with a reference image.
Abstract:
In a position measuring method, a mask including first patterns to be transferred and second patterns not to be transferred is prepared. The position coordinates of the second patterns are measured with a position measuring apparatus and an inspection system. First position correction data is generated based on the position coordinates of the second patterns. A difference is obtained between the measured position coordinates of the second patterns and the first position correction data is corrected using the obtained difference. Second position correction data is generated from the corrected first position correction data. An optical image including the position coordinates of the first and second patterns is acquired. The position coordinates of the first patterns of the optical image are corrected using a difference between the position coordinates of the second patterns of the optical image and of the second patterns based on the second position correction data.
Abstract:
An inspection apparatus comprising, an optical system emitting light having a predetermined wavelength, illuminating a sample while the light is converted into light having a polarization plane not in the range of −5 degrees to 5 degrees and 85 degrees to 95 degrees with respect to a direction of a repetitive pattern on the sample, an optical system for acquiring an image and forming said image on an image sensor using a lens, a half-wave plate, a first image sensor, a second image sensor, an inspection analyzer, wherein these differ in a transmission axis direction, a processor that obtains an average gray level and a standard deviation in each predetermined unit region of the image, and a defect detector, wherein a resolution limit defined by a wavelength of the light source and a numerical aperture of the lens is a value in which the pattern is not resolved.