Abstract:
An optoelectronic device includes an optoelectronic component that generates or receives radiation, a frame and an optical element, wherein the frame extends in a vertical direction between a radiation passage side and a rear side; an opening, in which the component is arranged, is formed in the frame; the optical element covers the component in a plan view of the radiation passage side; and the optical element is a Fresnel lens or a Fresnel zone plate.
Abstract:
A carrier for an electrical component, including a substrate having a surface, with an electrically conductive contact zone arranged on the surface of the substrate, a solder pad disposed on the contact zone, and a solder stop structure disposed laterally next to the solder pad. The solder stop structure has a surface that is less wettable with liquid solder than a surface of the contact zone. The solder stop structure subdivides the contact zone into a first zone region and a second zone region, with the first zone region having the solder pad. The solder stop structure extends over a portion of a total length of the contact zone such that the contact zone has a free connecting region that is free of the solder stop structure. The first and second zone regions are connected to one another by means of the free connecting region.
Abstract:
An optoelectronic semiconductor element may include at least one LED chip which emits infrared radiation via a top side during operation. The radiation has a global intensity maximum at wavelengths between 800 nm and 1100 nm. The radiation has, at most 5% of the intensity of the intensity maximum at a limit wavelength of 750 nm. The radiation has a visible red light component. The semiconductor element may further include a filter element, which is arranged directly or indirectly on the top side of the LED chip and which has a transmissivity of at most 5% for the visible red light component of the LED chip, wherein the transmissivity of the filter element is at least 80%, at least in part, for wavelengths between the limit wavelength and 1100 nm, and a radiation exit surface provided for emitting the filtered radiation.
Abstract:
A carrier for an electrical component, including a substrate having a surface, with an electrically conductive contact zone arranged on the surface of the substrate, a solder pad disposed on the contact zone, and a solder stop structure disposed laterally next to the solder pad. The solder stop structure has a surface that is less wettable with liquid solder than a surface of the contact zone. The solder stop structure subdivides the contact zone into a first zone region and a second zone region, with the first zone region having the solder pad. The solder stop structure extends over a portion of a total length of the contact zone such that the contact zone has a free connecting region that is free of the solder stop structure. The first and second zone regions are connected to one another by means of the free connecting region.
Abstract:
An optoelectronic semiconductor element may include at least one LED chip which emits infrared radiation via a top side during operation. The radiation has a global intensity maximum at wavelengths between 800 nm and 1100 nm. The radiation has, at most 5% of the intensity of the intensity maximum at a limit wavelength of 750 nm. The radiation has a visible red light component. The semiconductor element may further include a filter element, which is arranged directly or indirectly on the top side of the LED chip and which has a transmissivity of at most 5% for the visible red light component of the LED chip, wherein the transmissivity of the filter element is at least 80%, at least in part, for wavelengths between the limit wavelength and 1100 nm, and a radiation exit surface provided for emitting the filtered radiation.
Abstract:
An optoelectronic device includes an optoelectronic component that generates or receives radiation, a frame and an optical element, wherein the frame extends in a vertical direction between a radiation passage side and a rear side; an opening, in which the component is arranged, is formed in the frame; the optical element covers the component in a plan view of the radiation passage side; and the optical element is a Fresnel lens or a Fresnel zone plate.