Abstract:
There is herein described a lighting device including a composite encapsulant and an optical component. The lighting devices include a first interface between the composite encapsulant and a light emitting surface of a light source, and a second interface between the composite encapsulant and the optical component. In various embodiments, the composite encapsulant is configured to increase a critical angle at the first interface, so as to limit total internal reflection at the first interface. Moreover, the properties and/or other features of the composite encapsulant may be controlled to also limit total internal reflection at the second interface. Methods of making such lighting devices are also disclosed.
Abstract:
A wavelength-converting structure for a wavelength-converted light emitting diode (LED) assembly. The wavelength-converting structure includes a thin film structure having a non-uniform top surface. The non-uniform top surface is configured to increase extraction of light from the top surface of a wavelength-converting structure.
Abstract:
There is herein described a patterned thin-film wavelength converter (100,200) which comprises a substrate (104) having a first patterned surface with a first pattern, and a thin film (106,206) deposited on the first patterned surface. The thin film consists of a wavelength converting material and has a second patterned surface that is distal from the substrate. The second patterned surface has a second pattern that is substantially the same as the first pattern of the substrate. An advantage of the patterned thin-film wavelength converter is that post-deposition processing is not required to produce a textured surface on the wavelength converting material. A method of making the patterned thin-film wavelength converter is also described.
Abstract:
A wavelength converter for an LED is described that comprises a substrate of monocrystalline garnet having a cubic crystal structure, a first lattice parameter and an oriented crystal face. An epitaxial layer is formed directly on the oriented crystal face of the substrate. The layer is comprised of a monocrystalline garnet phosphor having a cubic crystal structure and a second lattice parameter that is different from the first lattice parameter wherein the difference between the first lattice parameter and the second lattice parameter results in a lattice mismatch within a range of 15%. The strain induced in the phosphor layer by the lattice mismatch shifts the emission of the phosphor to longer wavelengths when a tensile strain is induced and to shorter wavelengths when a compressive strain is induced. Preferably, the wavelength converter is mounted on the light emitting surface of a blue LED to produce an LED light source.
Abstract:
A method for producing a ceramic conversion element comprising the following steps is provided: - providing a ceramic basic body in the green state, said ceramic basic body comprises a phosphor, which converts light of a first wavelength range into light of a second wavelength range, - structuring the ceramic basic body in the green state such that pixel regions are formed within the ceramic basic body, said pixel regions being separated from each other by grooves, while the ceramic basic body comprises a continuously connecting part, which connects the pixel regions along a main surface, wherein - the structuring is performed by one of the following methods: laser structuring, micro-embossing, sawing, grinding, etching in combination with a mask, sand blasting, jet cutting. Alternatively, a ceramic basic body in the sintered state is provided and structured accordingly. Further, a conversion element as well as a optoelectronic device is described.
Abstract:
Thin film wavelength converters and methods for making the same are disclosed. In some embodiments, the thin film converters include a first thin film layer of first wavelength conversion material, a conductive layer, and a second thin film layer of a second wavelength conversion material. In one embodiment, a photoresist mask is applied to the conductive layer to form a pattern of by which the second wavelength conversion material may be applied by electrophoretic deposition to the exposed regions of the surface of the conductive layer.
Abstract:
A luminescent converter for a light emitting diode is herein described. The converter comprises a translucent substrate and a thin-film layer deposited on the substrate wherein the thin-film layer is comprised of a phosphor. The translucent substrate may further comprise a solid, ceramic phosphor such as YAG:Ce.
Abstract:
There is herein described a light source comprising a semiconductor device emitting a primary light, a thermally conductive optic having a reflective coating and a wavelength converter having a front surface and a rear surface. The optic is mounted to the rear surface of the wavelength converter and the primary light impinges on the wavelength converter in an emission region. The wavelength converter converts at least a portion of the primary light into a secondary light that is emitted from the front and rear surfaces of the converter and the optic reflects secondary light emitted from the rear surface back into the emission region. The light source may be used in either transmissive or reflective configurations.
Abstract:
Disclosed herein are technologies utilizing sacrificial material layers for producing and transferring wavelength converters for light emitting devices via lift-off. In some embodiments the technologies utilize a precursor in the form of a substrate having a sacrificial layer formed thereon. The sacrificial layer may possess one or more properties that allow it to survive processing of a conversion layer formed thereon, and to facilitate removal of the substrate via a lift off process. In some embodiments the sacrificial layer may be configured to survive relatively high temperature processing without substantially affecting the performance of the conversion layer, and to facilitate removal of the substrate via laser lift off.
Abstract:
A wavelength-converting structure for a wavelength-converted light emitting diode (LED) assembly. The wavelength-converting structure includes a thin film structure having a non-uniform top surface. The non-uniform top surface is configured increase extraction of light from the top surface of a wavelength-converting structure.