Abstract:
A passenger conveyance passenger tracking control system that controls operation of a passenger conveyance, e.g., an elevator car, includes at least one call request device, e.g., a call request panel, configured to receive at least one input from at least one passenger located at a occupancy depth grid. At least one passenger position three-dimensional (3-D) depth-sensing sensor is configured to track a position of the at least one passenger located at the occupancy depth grid. The passenger conveyance passenger tracking control system further includes an electronic control module in signal communication with the at least one call request device and at least one passenger position 3-D depth-sensing sensor. The electronic control module is configured to control operation of the passenger conveyance based on the position of the at least one passenger.
Abstract:
A method for monitoring an area includes distributing, by a detector unit, light during a first instance of time in order to characterize the area based on first data associated with the first instance of time; distributing, by the detector unit, light during at least a second instance of time in order to obtain second data; comparing a first portion of the second data to at least one of: a second portion of the second data and the first data; and based on the comparison, signaling an alarm condition by the detector unit when an evolution in the second data is detected in an amount greater than a threshold.
Abstract:
A building event management system for monitoring a building is provided including a plurality of devices located within the building. The plurality of devices includes at least one occupant interaction device. A controller is configured to communicate with the plurality of devices. The controller is configured to gather critical building information from the at least one occupant interaction device when an emergency event has been identified.
Abstract:
A method and system to mitigate at least one threat associated with a building includes receiving at least one threat parameter of the at least one threat via at least one threat sensor, and actively controlling at least one threat mitigator in response to the at least one threat parameter via a threat controller.
Abstract:
A passenger detector (10) for use in a passenger conveyor system (12) is provided that includes a structured light source (34), a structured light detector (36), and a controller (38). The structured light source (34) is operable to project light (40) into a detection area (32) in a predetermined projected pattern. The structured light detector (36) is operable to generate reflected light signals indicative of light (40) reflected back toward the structured light detector (36) from the detection area (32). The controller (38) is operable to receive the reflected light signals from the structured light detector (36), and operable to process the reflected light signals to make a determination as to whether a passenger is disposed within a detection area (32).
Abstract:
A ropeless elevator system includes a plurality of elevator cars configured to travel in a hoistway having at least one lane, a propulsion system to impart force to each elevator car of the plurality of elevator cars, and a controller. The controller is programmed to operate in an in-group mode where the plurality of elevator cars perform service demands, an out-of-group mode where at least one selected elevator car of the plurality of elevator cars is prevented from performing the group service mode service demands, and a transition mode where the at least one selected elevator car is prepared and transitioned from operation in the in-group mode to operation in the out-of-group mode.
Abstract:
A method includes generating a depth stream from a scene associated with a conveyance device; processing, by a computing device, the depth stream to obtain depth information; recognizing a gesture based on the depth information; and controlling the conveyance device based on the gesture.
Abstract:
An elevator system that consumes zero power during a sleep mode during which the elevator system has an ability to receive new calls and an ability to detect hoistway intrusions
Abstract:
Destination calls entered by means of buttons (21-29) are each given a designation unique to the car and pick-up floor for that call and other calls to be serviced therewith, such as a letter (A-E), which is different from any other outstanding calls. Calls can be reassigned among elevators (UL, LL, UR, LR) whether they are in the same or different hoistways (LF, RT). Signs (31-39, 41-49) adjacent each hoistway are illuminated to display the designation of any call which is being answered by an elevator car approaching the floor. Thus, passengers are informed when their call is being answered by the signs identifying the call, rather than identifying any particular car. Another embodiement identifies (60, 31a, 41a) the hoistway landing doorway (1, 2) as well as a letter to allow passengers to wait adjacent to the hoistway landing doorway of the car which will serve them.
Abstract:
An elevator system (20) includes multiple elevator cars (22, 32) within a hoistway (26). Counterweights (24, 34) are associated with the respective elevator cars (22, 32) by load bearing members (40, 50). In some examples, different roping ratios are used for the load bearing members (40, 50). In some examples, the lengths of the load bearing members (40, 50) are selected to allow contact between the counterweights (24, 34) within the hoistway (26) and prevent contact between the elevator cars (22, 32). The difference in car and counterweight separation distances is greater than a stroke of a counterweight buffer plus an expected dynamic jump of the elevator cars. A disclosed example includes passages (80) through a portion of at least one of the elevator cars (22) for accommodating the load bearing member (50) of another elevator car (32) located beneath the elevator car (22) with the passages (80).