Abstract:
A large-capacity optical disk (M) on which a plurality of system streams containing mutually-interleaved moving picture data and audio data are recorded. The system streams (VOB) are smoothly connected to each other. In each system stream (VOB) recorded on the disk (M), the STC which Is referred to by signal processing decoders (3801, 3100, and 3200) in decoding the first system stream and the STC which is referred to by the signal processing decoders (3801, 3100, 3200) in decoding the second system stream which is successively reproduced after the first system stream are switched to each other. A reproducing device (DCD) for reproducing the data from the disk (M) is also disclosed.
Abstract:
An optical disk for recording stereoscopic videos and high-quality video signals and a system for reproducing the videos and signals from the optical disk are made compatible with the conventional video reproducing system A reproducing device which is used for reproducing stereoscopic videos and high-quality videos obtains stereoscopic video or high-quality videos by reproducing both first and second interleaved blocks on the optical disk in which first and second video signals are alternately recorded on the left and right sides by dividing the first and second video signals into frame groups of one GOP or more and a reproducing device which is not used for reproducing the stereoscopic videos and high-quality videos obtains ordinary videos by only reproducing either the first or second interleaved block by jumping tracks.
Abstract:
METHOD AND DEVICE FOR SEAMLESS- REPRODUCING A BITSTREAM CONTAINING NONCONTINUOUS SYSTEM TIME INFORMATION A large-capacity optical disk (M) on which a plurality of system streams containing mutually-interleaved moving picture data and audio data are recorded. The system streams (VOB) are smoothly connected to each other. In each system stream (VOB) recorded on the disk (M), the STC which Is referred to by signal processing decoders (3801, 3100, and 3200) in decoding the first system stream and the STC which is referred to by the signal processing decoders (3801, 3100, 3200) in decoding the second system stream which is successively reproduced after the first system stream are switched to each other. A reproducing device (DCD) for reproducing the data from the disk (M) is also disclosed. Fig. 41
Abstract:
A large-capacity optical disk (M) on which a plurality of system streams containing mutually-interleaved moving picture data and audio data are recorded. The system streams (VOB) are smoothly connected to each other. In each system stream (VOB) recorded on the disk (M), the STC which is referred to by signal processing decoders (3801, 3100, and 3200) in decoding the first system stream and the STC which is referred to by the signal processing decoders (3801, 3100, 3200) in decoding the second system stream which is successively reproduced after the first system stream are switched to each other. A reproducing device (DCD) for reproducing the data from the disk (M) is also disclosed.
Abstract:
Procedimiento de decodificación de imágenes para decodificar cada una de una pluralidad de imágenescodificadas por bloque utilizando una matriz de cuantificación, comprendiendo dicho procedimiento las etapassiguientes:obtener, a partir de un flujo codificado, una matriz de cuantificación distinta de una matriz de cuantificaciónpredefinida y un ID de matriz para identificar la matriz de cuantificación, y reservar la matriz de cuantificación y elID de matriz;extraer, a partir del flujo continuo codificado, un ID de matriz que se añade a los datos generados codificandouna imagen actual y que se utiliza para identificar una matriz de cuantificación que se ha utilizado para codificarla imagen actual;identificar, a partir de las matrices de cuantificación reservadas en dicha etapa de reserva, una matriz decuantificación correspondiente al ID de matriz ydecodificar los datos de la imagen codificada actual utilizando la matriz de cuantificación identificada,componiéndose cada imagen de un componente luma, un primer componente croma y un segundo componentecroma, y estando el procedimiento de decodificación de imágenes caracterizado porque comprende las etapassiguientes:una primera etapa, en la que en caso de que exista una matriz de cuantificación para el componente luma,una matriz de cuantificación para el primer componente croma y una matriz de cuantificación para el segundocomponente croma, por separado, en la matriz de cuantificación identificada por el ID de matriz extraído, lamatriz de cuantificación para el componente luma se identifica como matriz de cuantificación para uncomponente luma de la imagen actual, la matriz de cuantificación para el primer componente croma seidentifica como matriz de cuantificación para un primer componente croma de la imagen actual, y la matriz decuantificación para el segundo componente croma se identifica como matriz de cuantificación para unsegundo componente croma de la imagen actual,una segunda etapa, en la que, en caso de que la matriz de cuantificación para el primer componente cromano esté presente y la matriz de cuantificación para el segundo componente croma esté presente en la matrizde cuantificación identificada por el ID de matriz extraído, se identifica la matriz de cuantificación para elsegundo componente croma, en lugar de la matriz de cuantificación predefinida, como matriz decuantificación para el primer componente croma de la imagen actual, yuna tercera etapa, en la que en caso de que tanto la matriz de cuantificación para el primer componentecroma y la matriz de cuantificación para el segundo componente croma no estén presentes en la matriz decuantificación identificada por el ID de matriz extraído, se identifica la matriz de cuantificación para elcomponente luma, en lugar de la matriz de cuantificación predefinida, como la matriz de cuantificación para elprimer componente croma de la imagen actual y el segundo componente croma de la imagen actual.
Abstract:
An optical disk for recording stereoscopic videos and high-quality video signals and a system for reproducing the videos and signals from the optical disk are made compatible with the conventional video reproducing system A reproducing device which is used for reproducing stereoscopic videos and high-quality videos obtains stereoscopic video or high-quality videos by reproducing both first and second interleaved blocks on the optical disk in which first and second video signals are alternately recorded on the left and right sides by dividing the first and second video signals into frame groups of one GOP or more and a reproducing device which is not used for reproducing the stereoscopic videos and high-quality videos obtains ordinary videos by only reproducing either the first or second interleaved block by jumping tracks.
Abstract:
The picture coding method of the present invention is a picture coding method for coding a picture on a block-by-block basis, comprising: a selection step of selecting one of at least two sizes as a size of a block on which orthogonal transformation should be performed; a transformation step of performing orthogonal transformation on a block having the selected size; a coding step of coding data of said block obtained in the transformation step; and a generation step of generating a coded stream that includes the coded data of the block and size information concerning the size selected in the selection step, wherein the size information indicates whether or not the size is a fixed block size within a predetermined section in the coded stream, and the predetermined section is one of a sequence, a group of pictures, a picture, a slice, and a macroblock.
Abstract:
On a recording medium, a monoscopic video specific section and a stereoscopic video specific section are continuous immediately after an extended data specific section. A shared section includes a continuous, interleaved arrangement having one each of main-view extents, sub-view extents, and extended extents. The stereoscopic video specific section includes a continuous, interleaved arrangement of extents having one each of the main-view extents and the sub-view extents. The monoscopic video specific section includes a continuous arrangement of a copy of the main-view extent arranged in the stereoscopic video specific section. The extended data specific section includes one of the extended extents that is to be used in combination with the copy of the main-view extent arranged in the monoscopic video specific section. The shared section is accessed when stereoscopic video images are played back, when monoscopic video images are played back, and when an extended stream is used. The stereoscopic video specific section is accessed during playback of the stereoscopic video images. The monoscopic video specific section is accessed during playback of the monoscopic video images. The extended data specific section and the monoscopic video specific section are accessed when the extended stream is read, immediately before or after a long jump.
Abstract:
The picture coding method according to the present invention is a picture coding method for coding a picture on a block-by-block basis through orthogonal transformation (Fig. 3, T) and quantization (Fig. 3, Q), and coding a quantization matrix (Fig. 2) that is used to derive quantization steps for frequencies of orthogonal transformation coefficients, the method comprising: calculating a difference value between each of frequency components included in the quantization matrix (Fig. 2) and a predetermined value corresponding to said each of the frequency components; and coding the difference value into a variable length code (Fig. 3, VLC), wherein a code length of the variable length code is shorter as the difference value is smaller, or equal to a code length of a neighboring difference value of said difference value (Fig. 4).