Abstract:
This invention presents a novel method to form uniform or heterogeneous, straight or curved and size-controllable nanostructures, nanowires, and nanotapes, including SiNW, in a nanochannel template. In the case of semiconductor nanowires, doping can be included during growth. Electrode contacts are present as needed and built in to the template structure. Thus completed devices such as diodes, transistors, solar cells, sensors, and transducers are fabricated, contacted, and arrayed as nanowire or nanotape fabrication is completed. Optionally, the template is not removed may become part of the structure. Nanostructures such as nanotweezers, nanocantiliver, and nanobridges are formed utilizing the processes of the invention.
Abstract:
There is disclosed a method providing micro-scale devices, nano-scale devices, or devices having both nano-scale and micro-scale features. The method of the invention comprises fluidic assembly and various novel devices produced thereby. A variety of nanofluidic and molecular electronic type devices and structures having applications such as filtering and genetic sequencing are provided by the invention
Abstract:
There is disclosed a method providing micro-scale devices, nano-scale devices, or devices having both nano-scale and micro-scale features. The method of the invention comprises fluidic assembly and various novel devices produced thereby. A variety of nanofluidic and molecular electronic type devices and structures having applications such as filtering and genetic sequencing are provided by the invention.
Abstract:
There is disclosed a method providing micro-scale devices, nano-scale devices, or devices having both nano-scale and micro-scale features. The method of the invention comprises fluidic assembly and various novel devices produced thereby. A variety of nanofluidic and molecular electronic type devices and structures having applications such as filtering and genetic sequencing are provided by the invention.