Abstract:
A metal-containing toner is electrostatically printed on a semiconductor surface. Subsequently, this surface is annealed to achieve certain material modifications selectively at the regions where the toner is applied. If the toner contains a crystallization-catalyst metal, such as, Pd, Ni, Pt, and Cr, and is printed on an amorphous semiconductor film, annealing results in conversion of the printed regions to polycrystalline. If the metal-containing toner is printed on a silicon surface (i.e., amorphous/poly-Si layer or Si wafer) the printed regions are selectively converted to a metal-silicide (with the sufficient amount of metal applied on these regions) upon annealing.
Abstract:
A novel porous film (3) is disclosed comprising a network of silicon columns in a continuous void which may be fabricated using high density plasma deposition at low temperatures, i.e., less than about 250 DEG C. This silicon film is a two-dimensional nano-sized array of rodlike columns. This void-column morphology can be controlled with deposition conditions and the porosity can be varied up to 90 %. The simultaneous use of low temperature deposition and etching in the plasma approach utilized, allows for the unique opportunity of obtaining columnar structure, a continuous void, and polycrystalline column composition at the same time. Unique devices may be fabricated using this porous continuous film by plasma deposition of this film on a glass, metal foil, insulator or plastic substrates (5).
Abstract:
The present invention is directed to the use of deposited thin films for chemical or biological analysis. The invention further relates to the use of these thin films in separation adherence and detection of chemical of biological samples. Applications of these thin films include desorption-ionization mass spectroscopy, electrical contacts for organic thin films and molecules, optical coupling of light energy for analysis, biological materials manipulation, chromatographic separation, head space adsorbance media, media for atomic molecular adsorbance or attachment, and substrates for cell attachment.
Abstract:
A novel porous film is disclosed comprising a network of silicon columns in a continuous void which may be fabricated using high density plasma deposition at low temperatures, i.e., less than about 250 ° C. This silicon film is a two-dimensional nano-sized array of rodlike columns. This void-column morphology can be controlled with deposition conditions and the porosity can be varied up to 90%. The simultaneous use of low temperature deposition and etching in the plasma approach utilized, allows for the unique opportunity of obtaining columnar structure, a continuous void, and polycrystalline column composition at the same time. Unique devices may be fabricated using this porous continuous film by plasma deposition of this film on a glass, metal foil, insulator or plastic substrates.
Abstract:
This invention uses large surface to volume ratio materials for separation, release layer, and sacrificial material applications. The invention outlines the material concept, application designs, and fabrication methodologies. The invention is demonstrated using deposited column/void network materials as examples of large surface to volume ratio materials. In a number of the specific applications discussed, it is shown that it is advantageous to create structures on a laminate on a mother substrate and then, using the separation layer material approach, to separate this laminate from the mother substrate using the present separation scheme. It is also shown that the present materials have excellent release layer utility. In a number of applications it is also shown how the approach can be used to uniquely form cavities, channels, air-gaps, and related structures in or on various substrates. Further, it is demonstrated that it also can be possible and advantageous to combine the schemes for cavity formation with the scheme for laminate separation.
Abstract:
There is disclosed a method providing micro-scale devices, nano-scale devices, or devices having both nano-scale and micro-scale features. The method of the invention comprises fluidic assembly and various novel devices produced thereby. A variety of nanofluidic and molecular electronic type devices and structures having applications such as filtering and genetic sequencing are provided by the invention
Abstract:
An electronic opto-electronic device or a chemical sensor comprising: an interpenetrating network of a nanostructured high surface area to volume ratio film material and an organic/inorganic material forming a nanocomposite. The high surface area to volume film material is obtained onto an electrode substrate first, such that the nano-scale basic elements comprising this film material are embedded in a void matrix while having electrical connectivity with the elctrode substrate. For example, the film material may comprise an array of nano-protrusions electrically connected to the electrode substrate and separated by a void matrix. The interpenetrating network is formed by introducing an appropriate organic/inorganic material into the void volume of the high surface area to vlume film material. Further electrode(s) are defined onto the film or intra-void material to achieve a certain device. Charge separation, charge injection, charge storage, field effect devices, ohmic contacts, and chemical sensors are possible.
Abstract:
Methods and systems for utilizing metal nanoparticles to enhance optical (UV, visible, and IR, as appropriate) signals from a reporting entity are presented. The methods and systems of this invention do not require the nanoparticles to be attached or adhered to a surface, assembled in a matrix or coated with a spacer coating.
Abstract:
A method of active nanofluidic flow control (parallel flow control-PFC) includes providing a nanofluidic channel and a pressure-driven microfluidic channel connected in parallel and actively controlling flow through the nanofluidic channel by using the pressure-driven microfluidic channel. A method of nanofluidic flow measurement includes providing a nanofluidic channel, a pressure-driven microfluidic channel connected in parallel for flow control, and an additional measurement microfluidic channel connected in series for flow measurement and measuring the nanofluidic flow rate by measuring the filling rate in the measurement microfluidic channel. A method of nano-scale volume fluid manipulation includes providing a nanofluidic channel and a pressure-driven microfluidic channel connected in parallel and manipulating nano-scale volume fluid through the nanofluidic channel by using the pressure-driven microfluidic channel. A method of fabricating a fluidic system is provided. The method includes forming a nanofluidic channel and a pressure-driven microfluidic channel connected to the nanofluidic channel in parallel.
Abstract:
Methods and systems for utilizing metal nanoparticles to enhance optical (UV, visible, and IR, as appropriate) signals from a reporting entity are presented. The methods and systems of this invention do not require the nanoparticles to be attached or adhered to a surface, assembled in a matrix or coated with a spacer coating.