Abstract:
The invention relates to semiconductor substrates and methods for producing such semiconductor substrates. In this connection, it is the object of the invention to provide semiconductor substrates which can be produced more cost-effectively and with which a high arrangement density as well as good electrical conductivity and closed surfaces can be achieved. In accordance with the invention, an electrically conductive connection is guided from its front side through the substrate up to the rear side. The electrically conductive connection is completely surrounded from the outside. The insulator is formed by an opening which is filled with material. The inner wall is provided with a dielectric coating and/or filled with an electrically insulating or conductive material. The electrically conductive connection is formed with a further opening which is filled with an electrically conductive material and is arranged in the interior of the insulator. The openings are formed with step-free inner walls aligned orthogonally to the front side or tapering continuously in the direction of the rear side.
Abstract:
A method and an apparatus for locally applying material to the surface of an anode of an X-ray source as well as a corresponding anode is presented. Anode material such as a repair material for filling a recess (121) in an X-ray emitting surface (115) is applied to the X-ray emitting surface of an anode (101). The location where such material is to be applied may be detected using a laser beam (133). The applied repair material including particles (41) of anode material such as tungsten, rhenium or molybdenum, is subsequently locally sintered using a high-energy laser beam (151). The sintered material may then be melted using a high-energy electron beam (163). Using such method, a damaged surface of an anode may be locally repaired. Alternatively, structures of different anode materials or of protrusions having different levels can be provided on the X-ray emitting surface (115) in order to selectively manipulate the X-ray emitting characteristics of the anode (101).
Abstract:
In a lighting unit with a holder (21) and a body (22), the body (22) is pivotally hinged to the holder (21) for rotation around at least a first axis of rotation. The body (22) comprises a support (1) for a lamp (2), which support (1) is pivotally hinged to the body (22) for rotation around a second axis, where upon a rotational movement of the body (22) around the first axis of rotation, the support (1) rotates conversely around the second axis, so that the defined orientation of the lamp (2) in the environment is maintained.
Abstract:
The present invention relates to a detector, in which detector modules are two-dimensionally arranged. The problem of the two-dimensional arrangement of detector modules is solved by a base structure (1) with guide elements (2) on which the detector modules (3) with at least one respective guide structure (4), are positioned relative to at least one of the respective guide elements, the guide elements (2) extending in a first direction (R1), at least two of the detector modules (3) being positioned consecutively on one of the guide elements (2) in the first direction (R1), and there are guide elements (2) that are separated from one another in a second direction (R2).
Abstract:
The present invention relates to a bed with an integrated sensor unit for a patient. Furthermore the invention relates to a method of providing a bed with a sensor unit for a patient. In order to provide a simple and reliable technique for monitoring patients a bed is suggested, comprising a bedframe (3) with at least a first and a second bedframe section (1, 2), said bedframe sections (1, 2) being connected to each other by means of at least one hinge (4), the bed further comprising a sensor unit (5, 5'), characterized in that the sensor unit (5, 5') is connected with the pivot (9) of the hinge (4), and is adapted to measure the movement of a bedframe section (1, 2) in a direction (21) substantially perpendicular to the rotary axis (22) of the pivot (9).
Abstract:
The invention relates to a device for the detection and/or transmission of radiation, particularly an X-ray detector 1, that consists of a carrier 10 on which an array of detector modules 20 is arranged. The carrier 10 comprises holes 11 through which a ball at the backside of the detector modules 20 can be inserted in order to fix the modules such that they can still rotate to a certain degree. Due to this freedom, the sensor modules 20 can align themselves during assembly.
Abstract:
The invention relates to an arrangement for collimating electromagnetic radiation, comprising a macrocollimator which has at least two cutouts, and microcollimator structures which are positioned in the cutouts of the macrocollimator and have lamellae that absorb electromagnetic radiation, so that collimator channels are formed which in each case extend such that they are transparent in a transmission direction.