Abstract:
The present invention relates to a fluorescent lamp including a visible radiation and/or UV-radiation transmissive discharge vessel, at least one luminescent layer coated onto the inner wall of the discharge vessel for converting UV-radiation to other wavelengths of UV-A, UV-B and/or visible radiation characterized in, that at a section to which no luminescent layer is applied on the inner surface area of said discharge vessel at least one substrate layer is applied on the outer surface of this area of said discharge vessel, and/or at least a section to which luminescent layer is applied on the inner surface area of said discharge vessel at least one substrate layer is applied on the outer surface of this area of said discharge vessel; whereby said substrate layer comprises at least one volatile organic material being releasable over an extended time period, whereby the volatile organic material is released by UV-radiation and/or thermal heat generated from said fluorescent lamp and, whereby at operation the temperature of the outer surface of the discharge vessel of said fluorescent lamp is ≦̸70° C.
Abstract:
A tanning device is described by which the bluish light emitted by mercury vapor lamps is converted into yellow or white light. For this purpose, the mercury lamps, or the sheets of transparent plastics material covering these lamps, are doped or coated with one or more organic or inorganic fluorescent dyes that partially absorb the blue light emitted by the mercury lamps and convert it into light of wavelengths of 550 to 650 nm.
Abstract:
A tanning device is described by which the bluish light emitted by mercury vapor lamps is converted into yellow or white light. For this purpose, the mercury lamps, or the sheets of transparent plastics material covering these lamps, are doped or coated with one or more organic or inorganic fluorescent dyes that partially absorb the blue light emitted by the mercury lamps and convert it into light of wavelengths of 550 to 650 nm.
Abstract:
The present invention relates to a fluorescent lamp including a visible radiation and/or UV-radiation transmissive discharge vessel, at least one luminescent layer coated onto the inner wall of the discharge vessel for converting UV-radiation to other wavelengths of UV-A, UV-B and/or visible radiation characterized in, that at a section to which no luminescent layer is applied on the inner surface area of said discharge vessel at least one substrate layer is applied on the outer surface of this area of said discharge vessel; and/or at least a section to which luminescent layer is applied on the inner sur face area of said discharge vessel at least one substrate layer is applied on the outer surface of this area of said discharge vessel; whereby said substrate layer comprises at least one volatile organic material being releasable over an extended time period, whereby the volatile organic material is released by UV-radiation and/or thermal heat generated from said fluorescent lamp and, whereby at operation the temperature of the outer surface of the discharge vessel of said fluorescent lamp is = 70° C.
Abstract:
The invention relates to a low-pressure gas discharge lamp provided with a gas discharge vessel comprising a gas filling with a discharge-maintaining composition, wherein at least part of a wall of the discharge vessel is provided with a luminescent material comprising a first UV-B phosphor containing, in a host lattice, gadolinium(III) as an activator and praseodymium(III) as a sensitizer, which lowpressure gas discharge lamp is further provided with means for generating and maintaining a low-pressure gas discharge Such a lamp is particularly useful for narrow-band UV-B phototherapy. The invention also relates to a UV-B phosphor containing, in a host lattice, gadolinium(III) as an activator and praseodymium(III) as a sensitizer.