Abstract:
This disclosure provides systems, methods and apparatus for shutter-based EMS light modulators controlled by electrode actuators that include a compliant inner beam electrode positioned between a movable beam electrode and a fixed beam electrode. A first voltage is applied to the movable beam electrode, and a sufficiently different voltage is applied to one of the compliant beam electrode and the fixed outer beam electrode. During actuation, the movable beam electrode is drawn towards the compliant inner beam electrode, while the combination of the movable beam electrode and the compliant inner beam electrode are further drawn to the fixed beam electrode.
Abstract:
This disclosure provides systems, methods, and apparatus for a MEMS display incorporating extended height actuators. A light modulating component can be positioned between a substrate and an opposing surface coupled to the substrate. A suspended electrode can be coupled to the light modulating component and suspended between the substrate and the opposing surface. An extended-height electrode can be positioned immediately adjacent to the suspended electrode, and can extend from the substrate up to a height beyond the height of the suspended electrode. The suspended electrode and the extended-height electrode can be configured to move the light modulating component laterally with respect to the substrate.
Abstract:
This disclosure provides systems, methods and apparatus for incorporating tip-gap adjustment features (TGAF) in actuators of shutter assemblies. The TGAF are incorporated into a drive beam of the actuator during the formation of the shutter assembly over a mold. The TGAF are configured such that they develop a mechanical stress or stress gradient. When the shutter assembly is released from the mold, the stress or stress gradient in the TGAF bend the drive beam such that a tip-gap between the drive beam and a load beam of the actuator is reduced. The reduced tip-gap, in turn, reduces an actuation voltage needed to actuate the shutter assembly.