Abstract:
The present invention relates to calix[4]arene-nucleoside hybrids containing calix[4]arene moieties and calix[4]arene-oligonucleotide hybrids as a DNA hairpin structure mimics synthesized by using the calix[4]arene-nucleoside as a key building block. Calix[4]arene-nucleoside and calix[4]arene-oligonucleotide hybrids of the present invention can effectively recognize DNA or RNA through triplex formation by bonding between calix[4]arene containing cavity and biologically active substance.
Abstract:
The present invention relates to calix[4]arene-nucleoside hybrids containing calix[4]arene moieties and calix[4]arene-oligonucleotide hybrids as a DNA hairpin structure mimics synthesized by using the calix[4]arene-nucleoside as a key building block. Calix[4]arene-nucleoside and calix[4]arene-oligonucleotide hybrids of the present invention can effectively recognize DNA or RNA through triplex formation by bonding between calix[4]arene containing cavity and biologically active substance.
Abstract:
The present invention relates to calix[4]arene-nucleoside hybrids containing calix[4]arene moieties and calix[4]arene-oligonucleotide hybrids as a DNA hairpin structure mimics synthesized by using the calix[4]arene-nucleoside as a key building block. Calix[4]arene-nucleoside and calix[4]arene-oligonucleotide hybrids of the present invention can effectively recognize DNA or RNA through triplex formation by bonding between calix[4]arene containing cavity and biologically active substance.
Abstract:
The present invention relates to calix[4]arene-nucleoside hybrids containing calix[4]arene moieties and calix[4]arene-oligonucleotide hybrids as a DNA hairpin structure mimics synthesized by using the calix[4]arene-nucleoside as a key building block. Calix[4]arene-nucleoside and calix[4]arene-oligonucleotide hybrids of the present invention can effectively recognize DNA or RNA through triplex formation by bonding between calix[4]arene containing cavity and biologically active substance.